You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

1he

cU0

Vicrocontrollers

Architecture, Programming and Applications

rf"f" L |

K. Uma Rao

" Andhe Pallavi

ALWAYS LEARNING PEARSON

THE 80351
MICROCONTROLLER

Architecture, Programming & Applications

Dr. K. Uma Rao

Dean, Faculty of Engineering,
Professor and Head, Department of Electronics and Communication Engineering,
RN Shetty Institute of Technology,
Channasandra, Bangalore

"Dr. Andhe Pallavi

Professor and Head, Department of Instrumentation Technology,
RN Shetty Institute of Technology,
Channasandra, Bangalore

PEARSON

This One

L TR

SB99-N3A-DBZN

Copyright © 2011 by Sanguine Technical Publishers, Bangalore - 560 016

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the publisher’s prior written consent in any form of binding or
cover other than that in which it 15 published and without a similar condition including this condition
being imposed on the subsequent purchaser and without limiting the rights under copyright reserved
above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or
transmitted in anv form or by any means (electronic, mechanical, photocopying, recording or otherwise),
without.the prior written permission of both the copyright owner and the above-mentioned pubfisher of
this book.

ISBN: 978-81-317-3252-6

First Impression, 2010
Second Impression, 2011

Fa

Published by Dorling Kindersley (India) Pvt. Ltd, licencees of Pearson Education in South Asia.
Head Office: 7th Floor, Knowledge Boulevard, A-8 (A), Sector-62, Noida 201309, UP, India.
Registered Ofhice: 11 Community Centre, Panchsheel Park, New Delhi | 10 017, India.

Printed in India by Chennai Micro Print.

1 Cnmjmters, Microprocessors and Microcontrollers—An
Introduction

1.1 Introduction

1.2 Common Terminology Associated with Computing Systems
L2.1 Hardware

1.2.2 Software

1.2.3 Firmware

1.2.4 Binary Digits

1.2.5 Memory

1.2.6 Input/Output or I/O
1.2.7 Central Processing Unit
1.28 Bus

129 Address Bus

1.2.10 Data Bus

1.2.11 Control Bus

1.2.12 Ports

1.2.13 Register Section
1.2.14 ASCII

1.2.15 Operating System
1.2.16 Time Sharing
1.2.17 Multi-Tasking

~1 I~ &~ v ey [b n h e e (& [W W W W W D e

1.3 Microprocessors and Microcontrollers

vii

vili Contents

1.4 CISC and RISC Systems : 10
1.5 Computing Languages 11
1.6 Memory 12
1.6.1 Random Access Memory (RAM) 12
1.6.2 Read Only Memory (ROM) 14
1.6.3 Cache Memory | 15
1.6.4 Memory Latency 15
1.7 Computer Architecture: Harvard and Von Neumann 16
1.8 Evolution of Microcontrollers—4-bit to 32-bit 18
1B} - SelectionofaMicrocontroller = 13
1.8.2 4-bit Microcontrollers ' 19
1.9 Summary 20
1.10 Questions 20
2 Data Representation | 23
2.1 Introduction 24
2.2 Number System 24
2.2.1 Binary System 24
2.2.2 Octal System 25
2.2.3 Hexadecimal System 25
2.3 Decimal Representation 28
2.4 Complements | 29
241 (r —1)’s Complement 29
. 24.2 r’s Complement 30
2.4.3 Subtraction of Unsigned Numbers using r’s

Complement 31

2.5 Fixed-Point Representation 32.
2.5.1 Signed Integer Representation 33

2.5.2 Arithmetic Addition of Signed Numbers 34

Contents

ix

2.5.3 Arithmetic subtraction of signed numbers 35
2.5.4 Decimal Fixed-Point Representation 36

2.6 Floating-Point Representation 38
2.7 Other Binary Codes 38
2.7.1 Gray Code 39
2.7.2 Other Decimal Codes 39
2.7.3 Alphanumeric Codes 40

2.8 Summary 44
2.9 Questions 44
3 8051 Architecture 47
3.1 Introduction 48
3.2 Block Diagram of 8051 48
3.3 Pin Diagram of 8051 51
3.4 Clock and Machine Cycle for 8051 51
3.5 Registers of 8051 53
3.5.1 Program Counter (PC) 54
3.5.2 Data Pointer (DPTR) 54
3.5.3 A and B Registers 54
3.5.4 Program Status Word (PSW) Register 54
3.5.5 Special Function Registers (SFR'’s) 37

3.6 The 8051 Internal Memory | 58
3.6.1 Internal RAM 58
3.6.2 Internal ROM 60
3.6.3 External Memory 60
3.64 Memory Address Decoding 62

3.7 Stack and Stack Pointer 69
3.8 Timers and Counters 69
3.8.1 Basic Timer Registers 70
3.8.2 Timer Operation 70
3.8.3 Timer SFR’s 71

x Contents

3.84 TMOD Register 71
3.8.5 Timer Modes i i
3.8.6 TCON Register 77
3.9 1/0O Ports 18
- 3.9.1 Port 0 (P0O: Address 80H) 78
3.9.2 Port 1 (P1: Address 90H) 79
393 Port2 (P2: Address AOH) 79
394 Poril 80
3.9.5 Writing to a Port 81
3.9.6 Reading a Port 81
3.10 Serial Input/Output 82
3.10.1 Basic Concepts in Serial /O
(Synchronous vs. Asynchronous Transmission) 82
3.10.2 Senal Port Control (SCON) Register 84
3.10.3 Power Mode Control (PCON) SFR 85
3.10.4 SBUF Register 87
3.10.5 Data Transmission and Reception 87
3.10.6 Serial Data Transmission Modes 87
. 3.11 Interrupts 91
3.11.1 8051 Interrupts 01
3.11.2 Interrupt Destination 92
.3.1 1.3 Interrupt Enable (IE) Si“R ?3
3.11.4 Polling Sequence 93
* 3.11.5 Interrupt Priority (IP) SFR 94
3.12 Supply Voltage 95
3.13 Status of SFR’s on Reset 05
3.14 Machine Cycles 96
3.15 Detailed Pin Description 08
3.16 Summary 99
3.17 Questions 99

Contents Xi

4 Assembly Language Programming I—Addressing Modes
and Data Transfer 103
4.1 Introduction 104
4.2 Assembly Language 104
4.2.1 Structure of Assembly Language 105
4.2.2 ~ Steps to Create an ALP iDﬁ
4.2.3 Program Code jn ROM 107
4.2.4 Execution of the Program by 8051 108
4.3 Flow Charts and Algorithm 108
4.4 8051 Data Types and Directives .llﬂ
441 Directives 110
4.5 Addressing Modes 112
4.5.1. Immediate Addressing Mode 113
4.5.2 _Register Addressing Mode 114
45.3 Direct Addressing Mode 115
4,54 Indirect Addressing Mode 118
4.5.5 Indexed Addressing Mode for ROM Access 120
4.6 Data Transfer with Stack 121
4.6.1 PUSH Instruction 121
462 POP Instruction 122
4.7 Data Exchange 123
4.8 Complete set of Data Transfer Instructions 126
4.9 Sunifary 127
4.10 Questions 128

5 Assembly Languagé Programming II — Arithmetic and

Logic Operator 131
3.1 Introduction 132
5.2 Addition 132
Addition of Unsigned Numbers 132

S.d.1

xii Contents

_135

5.2.3 Signed Addition 136
5.3 Incrementing and Decrementing 137
5.4 Subtraction 138
5.5 Multiplication 139
5.6 Dhvision 140
5.7 Decimal Addition 141
5.8 Summary of Aritl';meti{: ﬁperatjnns of 8051 148
5.9 Logical Dperaﬁuns: Byte Level 149
5.9.1 AND Operation 149
5.9.2 OR Operation 10
5.9.3 Exclusive OR Operation 150
'5.10CLEAR and COMPLEMENT Accumulator 154
3101 Clear Accumulator 154
5.10.2 Complement Accumulator 154
5.11 Bit Level Logical Operations 155
5.11.1 BitLevel AND 155
5.11.2 Bit Level OR 155
5.11.3 Complement Bits 156
5.11.4 Clear Bits 157
5.11.5 Data Transfer into Bits 157
5.11.6 Set Addressed Bits 157
5.12 Rotate Operation 158
5.12.1 Rotate Accumulator Right 159
5.12.2 .Rntate Through the Carry 160
5.12.3 Senalize Data 161
5.13 Swap Operation 162
5.14 Summary of Bit-Level Logical Operations 164
5.15 Summary 165
5.16 Questions 165

Contents xiii
6 Assembly Language III—Jump and Call Instructions 167
6.1 Introduction 168
6.2 Address Range of Jump and Call Instruction 168
6.2.1 Relative Range 168
6.2.2 Short Absolute Range 169
6.2.3 Long Absolute Range 170
6.3 Jump Instructions 170
6.3.1 Unconditional Jump 170
6.3.2 Bit Jump Instructions 171
6.3.3 Byte Jump Instructions 173
6.4 CALL Instruction 178
6.4.1 Subroutine 178
6.4.2 Sequence of Events in CALL Execution 179
6.5 Summary 181
6.6 Questions 181
7 Programming 8051 with C 183
7.1 Introduction 184
7.1.1 Advantages of Programming in ‘C’ for
Microcontrollers 184
7.1.2 Disadvantages of Programming in ‘C’ 184
7.2 Declaring Variables 184
7.2.1 Data Types in 8051 ‘C’ 185
7.2.2 Arrays and Strings 185
7.2.3 Number Representation 187
7.3 Writing a Simple C Program 187
7.4 Delay Generation in C 193
7.5 Programming Ports of 8051 with C 198
7.6 Operators in 8051C 207
7.7 Serial Port Programming 213
1.8 Code Conversions in C 218

. xiv Contents

7.9 Code Space 226
7.10 Summary 227
Fh Que;tit}ns 228
8 Timers/Counters and Serial Port in 8051 231
8.1 Introduction 232
8.2 Time Delay Generation using Timers 232
8.2.1 Procedure for Time Delay Generation 232
8.2.2 Generation of Square Wave 236
8.2.3 Timer mode 0 Programming 238
8.2.4 Large Time Delays 243
8.3 Application of Timers in mode 2 246
8.4 Counter Application 251
8.5 Seral Data Transfer 264
8.5.1 8051 Connection to R$232 264
8.5.2 Special Function Registers of Serial Port 265
8.5.3 Review of Working of Serial Port 265

8.5.4 Procedure to Program the 8051 to Transfer Data
Serially 266

8.5.5 Procedure for Programming the 8051 to Receive
Data Senally 276
8.5.6 Procedure for Doubling the Baud Rate in the 8051 277
8.6 Second Serial Port in 8051 | 281
~ 8.6.1 Features of Second Serial Port 282
8.7 Summary | 289
8.8 Questions 290
9 Interrupts 293
9.1 Introduction 294
9.2 Review of Interrupts in 8051 294

9.2.1 Execution of an Interrupt by 8051 (On the Recept

of Interrupt Request) 296

Contents

XV

External Interrupts

9.3 310
9.3.1 Level Triggered Interrupt Mode 310
0.3.2 Edge Triggered Interrupts Mode 313
9.4 Serial Communication Interrupt 316
9.5 Priority Implementation for 8051 Interrupts 322
0.5.1 Changing Interrupt Priority 324
9.6 Summary 332
9.7 Questions 333
10 Interfacing the 8051 335
10.1 Introduction 336
10.2 Interfacing a LED and a 7-Segment Display to an 8051 336
10.2.1 Multiplexed 7-Segment Display 339
10.2.2 LCD Display 341
10.3 Interfacing a Single Key (Push Button) to the 8051 355
10.4 MATRIX KEYPAD or Interfacing Keyboard to
the 8051 360
e
10.5 Stepper Motor Interfacing to 8051 365
10.6 Interfacing a DAC to an 8051 3735
10.7 DC Motor Interfacing to 8051 385
10.7.1 Features of a DC Motor 385
10.7.2 Interfacing DC Motors Using Opto Isolators | 390
10.7.3 PWM Control of -D{" Motor 391
10.8 ADC-Analog-To-Digital Converters 303
10.8.1 Parameters of ADC 394
10.8.2 Interfacing ADC 0804 to 8051 395
10.8.3 ADC 0808/0809 397
10.8.4 ADC (0848 399
1085 Senal ADCs 401
10.9 Summary 406

xvi Contents

11 Simulation of 8051 using Keil Software (Lab Manual) 407
11.1 Introduction 408
11.2.1 Processor Features 408

11.3 Creating and Compiling a pVision2 Project 400
11.4 Programming in ALP 411

11.10 DAC (Digital to Analog Converter) Interfacing to 8051 438

Appendix A 457
Appendix B _ 461
References 469

Index ' 471

Computers, Microprocessors and
Microcontrollers—An Introduction

Living in a world heavily computer oriented, we are bombarded with a number
of words and terms related to computers. As technology has invaded right into
our homes, it 1s very difficult to find a product which 1s available without some
digital control in it. Before we learn the basics of microcontrollers, we will

familiarize ourselves with some of the terms and try to grasp an overview of
computers and computing systems.

Learning Objectives
At the conclusion of this chapter, you will be able to:

& Define terms such as microcomputer, microprocessor, microcontroller.
hardware, software, firmware, timesharing, multitasking, distributed
processing and multiprocessing.

& Explain the difference between higher level languages and assembly
language of a computer.

@ Define ASCII code and explain its relationship to binary code and
alphanumeric characters.

& Explain memory organization and memory map.
& Explain how memory address is assigned to a memory chip.
@ List the different types of memory and their functions.

& Understand and describe how a microprocessor/microcontroller fetches and
executes an instruction.

2 The 8051 Microcontroller

1.1 Introduction

The microprocessor can be viewed as a logic device which can be programmed,
to enable it to be used to control processes or as a data processing unit or as
the computing unit of a computer. To understand how the microprocessor
came into existence, we must understand a brief history of the growth of two
major technologies: digital computers and solid-state circuits. These two areas
integrated to give birth to microprocessors and microcontrollers, subsequently.

The digital computer 1s a set of digital circuits controlled by a program that
makes 1t do the job we want to be done. The program tells the computer how
to process the data using arithmetic and logic operations, memory circuits
and input/output devices. The way the arithmetic and logic circuits, memory
circuits and input/output devices are put together. so that they function as one
unit, is called the architecrure.

The computer can be represented as shown in the block diagram of Fig, 1.1.

Random access memory |

-

L

Central processing unit
CPU

E

L i

QOutput
devices

Input
devices

[nput-output processor .

Figure 1.1. Block diagram of a digital computer.

Any digitai computer has the following major components:

& The Central Processing Unit (CPU) which consists of the Arithmetic and
Logic Unit (ALU) which is responsible for performing all arithmetic and
logic operations and the control unit which controls various operations of
the computer. The CPU is responsible for performing the specific task by
communicating with the memory and input/output devices.

@ The memory unit which is dealt with in detail later.

& The input devices like keyboard, mouse; joystick etc through which the user
can enter data into the computer.

@ The output devices like monitors, printers, CDs etc where the results can
be displayed or stored. '

Computers, Microprocessors and Microconivollers—An Introduction 3

The largest and most powerful computers are called the mainframes. They
are designed to work at very high speeds with large data words and have
massive amounts of memory. They are generally used for very large data
bases like military, large business enterprises, creating graphics for movies
etc. Examples are Cray Y-MP/832, IBM 4381 and Heneywell DPSE. The
fastest and most powerful mainframes are called supercomputers.

A scaled down version of the mainframe is the minicomputer. They run more
slowly, work with smaller data and do not have as much memory capacity as
a mainframe. They are used in business data processing, process conirol, etc.
Examples are DEC VAX 6360, DGMV/R000I] ete.

Microcomputers are small computers which have a microprocessor as
its CPU. The microprocessor 1s a programmable, synchronously operating
(Clock-driven) register based device that reads binary instructions from mem-
ory, accepts binary data, processes it and provides the output. They are
extensively used today in a wide range of applications from automobile control,
toys, washing machines to computer-aided design systems. A microcom-
puter which has the microprocessor, memory and I/0 device on a single chip
becomes the microcontroller.

1.2 Common terminology associated with computing systems
1.2.1 Hardware

It refers to the physical components and circuits of the system.

1.2.2 Snftware

Software refers to the pregrams written in the form of commands/instructions,
either to perform a task or to operate the computer.

1.2.3 Firmware

It refers to the programs stored permanently in the ROM or other devices,
written for a specific application.

1.2.4 Binary digits

All computing systems operate in binary digits, 0 and 1 called bits. In the
physical system, a bit refers to a voltage level. In logic systems which use
positive logic a lower voltage represents U and a higher voltage represents a 1.

4 The 8051 Microcantraller

They are also called low and high respectively. Negative logic, uses the reverse
wherein a lower voltage represents logic 1 and a higher voltage represents a
logic 0. Microprocessors and microcontroilers process a group of bits called
the word. For example an 8-bit processor, operates on data of 8 bits and so on. A
word of 4-bit length is called a nibble and a word of 8 bit length is called a byre.

1.2.5 Memory

It is the storage element in the computing system. The first purpose is to store
the codes for the sequence of instructions which the computer has to perform.
The second purpose it to store the binary-coded data upon which the computer
operates. Typically, the memory unit 1s made of B-bit registers arranged in
a sequence. These are arranged in groups of powers of 2. A semiconductor
memory with 2! = 1024 registers is known as 1 K memory chip (in computer
technology, | K refers to 1024 and not 1000). Similarly we have standard 4 K,
8 K etc. memory chips. Each register in the memory is identified by a unique
address.

1.2.6 Input/Output or 1/O

The I/0 section allows the computer to take in data from the outside world
or send data to the outside world. The peripherals such as keyboards, video
terminals, printers and modems are connected to the /O section. They allow
the user to communicate with the computer.

1.2.7 Central Processing Unit

1.2.8 Bus

This controls the operation of the computer. In a4 microcomputer the CPU is
a microprocessor. The CPU fetches the instruction to be carried out from the
memory, decodes the instruction into a series of operations and then executes
them.

The bus is a group of lines used to transfer bits between various components
of the computer. For example, between CPU and memory; CPU and output
device etc. '

1.2.9 Address Bus

The address bus consists of 16, 20, 24 or 32 parallel signal lines. The CPU
sends the address of the memory location that is to be accessed (written to or

Computers, Microprocessors and Microcontrollers—adn Introduction §

read from) on these lines. The number of memory locations that the CPU can |
address 1s determined by the number of address lines. If it has'N address lines
it can address 2" distinct memory locations.

1.2.10 Data Bus

The data bus consists of 8, 16 or 32 parallel lines. The data lines are bidirec-
tional, meaning that data can flow in both directions, between the computer
and memory.

1.2.11 Control Bus

The control bus consists of signal lines. over which the CPU sends signals
to control the various operations of the computer, its communication with
the outside world and peripheral devices. As an example, we can consider
the memory read operation. The CPU sends the memory read signal over the
control bus to the memory and enables the addressed memory to output the data
word onto the data bus. Similarly other common control signals are memory
write, I/O read, I'O write etc.

1.2.12 Ports

The actual physical device used to interface the computer buses to external
systems are called ports. An input port allows data from a keyboard, A/D
converter or some other source to be read into the CPU. Similarly, the output
port 1s used to send the data to a peripheral device such as a video display,
D/A converter or a printer. Physically, the ports are nothing but latches (like D
flip-flops). If they are used as an input port, the D-inputs are connected to the
external device and the output is connected to the data bus. Data will then be
transferred through these latches when the control unit sends the control signal.
If they are used as an output port, the D inputs of the latches are connected
to the data bus and the Q outputs are connected to some external device. Data
is then transferred to the external device when the latches are enabled by a
control signal.

1.2.13 Register section

The register section in a microprocessor or a microcontroller consists of a
set of registers, which are on the chip and are used to store data temporarily
during execution of a program. They are accessible to the user through the

6 The 5051 Microcontroller

instructions. Since they are on chip, the CPU can access these faster than the
external memory.

1.2.14 ASCII

In communication, we require standard formats for exchange of information.
This 1s one such standard widely used. ASCII stands for American Standard
Code for Information Interchange. This 1s a 7-bit alphanumeric binary code
with 128 combinations (27 = 128). Each combination is assigned to a let-
ter, decimal digit, a symbol or a machine command. The later versions have
expanded this code to an 8-bit code with 256 combinations.

1.2.15 Operating System

Operating system is a set of programs that manages the interaction between
hardware and software. Examples are MS-DOS, MS-Windows, UNIX,
LINUX etc.

1.2.16 Time Sharing

A common method for providing computer access is the method of time-
sharing. Here, several terminals (output devices) are connected to the
computer. The terminal can be remotely located and connected to the main
computer through direct wires or telephone wires, Normally the rate at which
the user enters and interprets data is much slower than the rate at which the
computers process data. Hence, the computer can serve many users by divid-
ing its time amongst them. This is called time-sharing and allows several users
to interact with the computer at the same time. Each user can get information
or store information in the memory connected to the main computer. A typical
example 1s an airline/railways reservation system which allows users, spread
across wide geographical areas, to access information and make reservations.
Similarly, in a factory, such a time-shared system will permit the computer to
control a number of machines.

In distributed processing or multiprocessing, the terminals of the time-
sharing systems are replaced by microcomputers, so that each user can do
tasks locally without having to use the main computer at all. However, the
connectivity to the main computer through a network, permits the user to
access the computing power, memory and other resources of the main com-
puter. The advantage of this system, is that in the event of the main computer
tailing, the microcomputers can continue working locally. Further, it also
relieves the main computer from many tasks which can be performed by the
microcomputers.

Computers, Microprocessors and Microcontrollers—An Introduction 7

1.2.17 Muiti-tasking

Multi-tasking refers to the ability of the computer to do a number of tasks
when it controls machines or processes which are much slower than it. In
such a case it can check and adjust a number of parameters, and then get
back to the first one and repeat the process. Such a system is called a multi-
tasking system, since it appears as if the computer is performing all the tasks
at once.

1.3 Microprocessors and Microcontrollers

The basic idea behind both of them is the same. However, they have a number of
differences which determines the choice of one over the other. Microcontroller
was a by product of the microprocessor. The microprocessor 1s a multipur-
pose, programmable, device that can process data. The first microprocessor
was manufactured by INTEL Corporation in 1971. The microprocessor is not
complete by itself and has very limited memory on chip. Hence, for it to
be of use, it must be interfaced with memory, /O devices and other periph-
erals. It is programmable, which means that it can be instructed to perform
given tasks within its capability. These tdsks are communicated to the pro-
cessor by means of instructions which are stored in the memory sequentially.
The microprocessor starts from the first instruction to be executed. It fetches
it from memory, then decodes it and executes the instruction. It continues
doing so, until it comes across an instruction to stop. During this opera-
tion the microprocessor uses the system buses to fetch the instruction and
data from the memory. It uses the register section to store data temporar-
ily and then performs the necessary computation using the ALU section.
It finally sends the data to the output device through the system bus. The
main idea behind a microprocessor is that it 1s a general purpose device. 1t
is very flexible. The length of the data bits which majority of the instruc-
tions operate upon determines the size of the processor. Therefore we have
4-bit, 8-bit, 16-bit, 32-bit etc. processors. Starting from the 4-bit 4004 proces-
sor in 1971, Intel Corporation has come up with a number of microprocessors
which include 8086 (1978), 804806 (1989) and the more recent Pentium (2003).
Motorola 1s another leading manufacturer. [ts common processors are 6800
(1974), 68030 (1987), 68040 (1989) and PowerPC604 (1994). Other popu-
lar processors are Athlon (from AMD), MBLB086 (Fujitsu), SRP1030 (Sun
Microsystems), TC85R4000 (Tisguba), TMS390 (Texas Instruments) and
Alpha (DEC). -

Thus, in short the microprocessor is a general purpose device which reads
data, performs extensive calculations on it, and stores the results in a mass
storage device or it displays it on a video screen, to be viewed by the user.

8 The&0i! Mit:m::_‘ﬂnnﬂﬂer

The microcontroller on the other hand can be viewed as a computer on a
single chip. This essentially means that the CPU, RAM, ROM and may be
other devices like Timers, etc, are all located on the same chip and for many
applications, no interface with other devices 1s needed. The contrast between
the microprocessor and microcontroller is shown in Fig. 1.2.

Micro :
processor ROM RAM |- o Timer 5;:;]

CPU ' por

(eneral purpose microprocessor

CPU |RAM |ROM

Senal

QO |[Timer| com
port

Microcontroller

Figure 1.2. Microprocessor vs. Microcontroller.

Microcontrollers range from very simple to extremely complex designs. The
microcontreller is meant to read data, perform limited calculations on it and
control the environment depending on the calculations. Generally, the control
of an operation is stored as a program, permanently in the microcontroller
and does not change with the lifetime of the system. In general, the micro-
controller uses a very limited number of instructions. Unlike microprocessors,
in microcontroller, many instructions are coupled with pins on the IC chip.
This means that several pins have multiple functions, which can be chosen by
the programmer. In other words, the pins are programmable. (More of this in
detail, when we discuss architecture). '

Another major difference between the microprocessor and microcontroller
1s the way in which data can be moved between the memory and the CPU. Ina
microprocessor there are several instructions to achieve this in different ways,
whereas in a microcontroller there are very few instructions to achieve this.

Microcontrollers also have several bit-handling instructions. This means that
individual bits can be operated upon or changed in some registers. This makes
them extremely suitable for control applications. Normally, in microprocessors
most of the instructions are byte-handling, which means that the complete
byte can be operated upon/changed in the registers. They are equipped with
very few bit-handling instructions. Common microcontrollers are Intel 8051,

Computers, Microprocessors and Microcontrollers—An Introduction 9

DS89C440, DS87520, AT89LVS52, etc. In brief the comparative features of
microprocessors and micmcuntmller_s are shown 1n Table 1.1.

Table 1.1 Comparison of microprocessors and microcontroller.

Microprocessor Microcontroller

1.| CPU is stand-alone. RAM, CPU, RAM, ROM, I/O and
ROM, I/O, timer are separate and timer are all located on a single chip
interfaced with CPU

2. | Designer can decide on the Fixed amount of ROM, RAM,
amount of ROM, RAM etc. to be I/O ports on chip
connected

3. | Expansive applications Applications in which cost, space

and power are critical

4. | Versatile and general purpose Not very versatile

5. | Large number of instructions with | Limited number of instructions with
flexible addressing modes few addressing modes

6. | Very few instructions which have Many instructions with bit-handling
bit-handling capability capability

An embedded system is a system with the processor/controller embedded
into that application. An embedded product uses a microprocessor or a micro-
controller to do one task only. In an embedded system generally, there is only
one application software that is burned into the ROM. Examples are video
game players, mp3, printer, electronic lock etc. A critical need of an embed-
ded system is to decrease power consumption. This is done by integrating more
functions into the chip. At times the terms embedded system and microcon-
troller are used interchangeably. Embedded products using microcontrollers
are used in a variety of applications:

& Home Appliances—Intercom, VCR, Cellular phones, Video games, Cam-
era, Fax machines, Security systems, TVs, Musical instruments, door
openers, sports gear etc.

& OfUee—Telephones, Computers, Security systems, Laser printer, Comput-
ers, Air conditioners and heaters etc.

@ Others—Instrumentation, space craft, Smart cards, Entertainment, etc.

The processors are broadly divided into CISC and RISC systems as discussed
next.

10 The 8051 Microcontroller

1.4 CISC and RISC Systems

Based on the instruction set, we broadly classify computers/microprocessors/
microcontrollers into CISC (Complex Instruction Set Computers) and RISC
(Reduced Instruction Set Computers) devices. In CISC devices, there are a
large number of instructions, each of which has a different permutation of the
same operation (like data access, data transfer etc.). This gives the program-
mer flexibility in writing the programs. The major characteristics of CISC
systems are

& Typically large number of instructions; around 100-250 instructions.
@ Some instructions perform specialized tasks and are used infrequently.

@ A large number of addressing modes. (Addressing mode is the manner in
which data is obtained). :

& Variable length instruction formats.

@ Execution time for an instruction may take several clock cycles.
& Execution time for each instruction may be different,

& Efficient use of memory.

& Robustness of the instruction set is given precedence over speed.

& Instructions are available to manipulate operands in memory.

RISC processors on the other hand have a very limited number of instructions.
The major characteristics of RISC systems are

@ Relatively few instructions.

@ Instructions are executed 1n small clock periods. Hence they are faster than
CISC.

& Very few addressing modes.

@ Limited memory access made available to certain instructions.
@ All operations are performed within the registers of the CPU.
@ Instructions are of fixed length.

@ Control is hardwired in the system.

Typical CISC microprocessors are 8085, 8086, Pentium (all from Intel),
M6800 (Motorola), Z-80 (Zilog) and microcontrollers are 8051 series (Intel).
A few examples of RISC microcontroliers are the PIC microcentroller series
from Microchip (only 33/35 instructions).

We now go to the different languages available to program computing systems.

Computers, Microprocessars and Microcontrollers—An Introduction 11

1.5 Computing Languages

Digital devices recognize, understand and operate binary numbers. A number
of bits are combined into a single unit, during data processing. A word 1s
defined as the number of bits a processor/controller recognizes and processes
at a time. The word length ranges from four bits in small systems to 64-bits in
high speed processors. A group of 8 bits is called a byre and a group of 4 bits
is called a nibble. '

Each microprocessor/microcontroller has its own set of instructions, com- -
municated to it in binary language called the Machine Language. An
instruction in the machine-language is simply, a combination of bits to give a
specific meaning to the logic circuits using them. It would be extremely diffi-
cult for people to read and write machine language instructions. For example,
‘00111100 represents the instruction to increment the contents of a regis-
ter called the accumulator in 8085 microprocessor. This string of bits hardly
makes any sense to a person reading it, nor does it appear meaningful, since
it bears no direct relevance to its task. However, this is the only language the
CPU understands!

To help in easier pregramming, we use English like words, to program in
Assembly Language. For example the instruction to increment the accumu-
lator is written as ‘INR A’, which makes a lot more sense than *00111100°!
These instructions are called mnemonics. The mnemonics are converted to
machine language using an Assembler. The assembly language is specific to
the microprocessor/microcontroller and hence the programs are not transfer-
able from one system to another. In other words the programs are said to lack
‘portability’. To overcome this limitation, general purpose languages have
been developed which are independent of the processor. They are called High-
Level Languages. Examples are Basic, Fortran, C, C** etc. The instructions
in high-level languages are called Statements.

C=A+B

is a statement in Fortran which assigns the variable C to the sum of A and
B. Programs written in high-level languages are independent of the processor
and hence are easily portable form one machine to another.

These statements are converted into machine language instructions using a
Compiler or an Interpreter. A compiler translates the entire high-level language
program called the seurce code, into machine language code, called the object
code. Interpreters on the other hand, read one instruction at a time and convert
it into object code.

Compilers and interpreters require large memory space because higher-
level languages require several machine codes to translate into binary. On the

12 The 8051 Microcontroller

other hand, assembly level languages have a one is to one correspondence
between the mnemonics and the machine code. Therefore, assembly language
programs are compact and require less memory space. They are suitable for
programs which are small and compact. They are also preferred for real-time
applications where the program efficiency is critical.

1.6 Memory

Memory is used to store instructions and data. What exactly is memory? It
is a device which can store binary digits—a 0 or a I—in the form of two
discrete voltage levels or as charge in a capacitor. A flip-flop or a latch is a
basic element of memory, where the bits are stored as voltage levels. Its called
a memory cell. A group of flip-flops are used to store a word. This group is
identified as a single unit, by a memory address. The number of bits in this
group determines the word length of the memory chip. The number of bits a
semiconductor memory can store is called a chip capacity. This can be in Kbits
(Kilo bits) or Mbits (Mega bits). It should be noted that the storage capacity
of memory chips 1s given in bits, whereas the storage capacity of computing
systems is in bytes.

An important characteristic of the memory is the speed at which the data in
the memory can be accessed. To access the data, the address is placed on the
address pins, the READ pin is activated, and after a certain amount of time
has elapsed, the data is loaded on to data pins. The speed of the memory chip
is called the access time.

Basically memories are classified into prime memory which is used in the
system for storing instructions and data and storage memory, used to store
information. Prime memory are of different types. They are briefly discussed
below.

1.6.1 Random Access Memory (RAM)

These memory locations can be randomly accessed for information transfer.
A simple block diagram of a RAM is shown in Fig. 1.3.

The k address lines can address a maximum of 2¥ memory locations. The
size of a RAM with & address lines and n data lines is 2¥ words, or 2% x n bits.
The two operations RAM can perform are read and write operations. The Write
operation, transfers a word into the memory (writes to the memory) and a Read
operation transfers a word out of memory (reads from memory). This memory
is volatile, which means that when the power is turned off, the contents are
destroyed. Static RAM (SRAM) is made of flip-flops. Each flip-flop normally

Compurters, Microprocessors and Microcontrollers—An Introduction 13

n data
input lines

k address lines
Read Memory unit

- 2K words
n bits per word

|

n data
output lines

v

Write

¥

Figure 1.3. Random Access Memory.

requires 6 transistors (or MOSFETs) to hold a single bit of data. It is expensive
and significantly faster than Dynamic RAM (DRAM). It.is therefore used
where either speed or low power, or both, are principal considerations. SRAM
is also easier to control (interface to). SRAM is less dense than DRAM and
is therefore not used for high-capacity, low-cost applications such as the main
memory in personal computers. The power consumption of SRAM varies
widely depending on how frequently it is accessed; it can consume heavy
power when used at high frequencies. On the other hand, static RAM used at a
slower pace, such as in applications with moderately clocked microprocessors,
draw very little power and can have a nearly negligible power consumption
when sitting idle—in the region of a few microwatts.

Dynamic RAM is the most common type of memory in use today. Inside
a dynamic RAM chip, each memory cell holds one bit of information and is
made up of two parts: a transistor and a capacitor. The capacitor holds the
bit of information—a 0 or a 1, as charge. The transistor acts as a switch that
lets the control circuitry on the memory chip read the capacitor or change its
state. The main advantages of DRAM are high density, cheaper cost per bit,
and lower power consumption per bit. The problem with the capacitor is that
is has a leak. In a matter of a few milliseconds it gets discharged. Therefore,
for dynamic memory to work, either the CPU or the membrjz controller has to
recharge all of the capacitors holding a 1, before they discharge. To do this,
the memory controller reads the memory and then writes it back. This refresh
operation happens automatically thousands of times per second. The dynamic
RAM gets its name from this refresh operation. This refreshing takes time and
slows down the memory. DRAMSs are available today in the range nf 2G-bit
capacity (G-Giga = 10°).

Some standard RAM chips are shown in Table 1.2.

14 The 8051 Microcontroller

Table 1.2 RAM chips.
Chip Type Capacity | Organization | Speed
6116P-1 SRAM | 16 K 2K x 8 100 ns
6116LP-3 SRAM | 16 K 2K x 8 150 ns
6264LP-12 | SRAM | 64 K 2K x 8§ 120 ns
62256LP-12 | SRAM | 256 K 2K x 8 120 ns
4164-15 DRAM | 64 K 64K x 1 150 ns
41464-8 DRAM | 256 K 256K x 4 80 ns
41256-6 DRAM | 256 K 256K x 1 60 ns
511000P-8 |DRAM | 1M 1M x 1 80 ns
514100-7 DRAM | 4 M 4M x 1 70 ns

1.6.2 Read Only Memory (ROM)

It’s a memory unit that performs a read operation only. It does not have a
write capability. This means that binary information stored once in ROM is
permanent and cannot be altered. An m x n ROM is an array of memory cells
organized into m words of n bits each. In a computer system, ROM is used
to store fixed programs which are not to be altered. In Mask ROM the desired
contents are permanently programmed in it, by the IC manufacturer, during
fabrication. It is not user-programmable. It is expensive and used when the
needed volume of chips is high and it is sure that the contents will not change.
It must be noted that all ROM memories have 8 data pins. A typical ROM 1s
shown in Fig. 1.4.

k address
input lines

l

|
m xn ROM |
m =2k |

l

n data
‘output lines

Figure 1.4. Read Only Memory.

Programmable Read-Only Memory (PROM), or one-time programmable
ROM (OTP), can be written to or programmed via a special device called
a PROM programmer. Typically, this device uses high voltages to perma-

- nently destroy or create internal links within the chip. Consequently, a PROM
can only be programmed once. Erasable PROM (EPROM) was invented to

Computers, Microprocessors and Microcontrollers—An Introduction 15

make changes in the contents of PROM after it is burned. It can be erased
by exposure to strong ultraviolet light (typically for 10 minutes or longer),
then rewritten with a process that again requires application of higher than
usual voltage. It can be erased typically thousands of times. Repeated expo-
sure to UV light will eventually wear out an EPROM. Electrically Erasable
PROM (EEPROM) is based on a similar semiconductor structure to EPROM,
but allows its entire contents (or selected banks) to be electrically erased, then
rewritten electrically. In addition, in EEPROM we can select which byte is to
be erased, unlike an EPROM where the entire contents of the ROM are erased.
The advantage of the EEPROM is in the fact that we can erase and program
its contents while it is still in the system board and it does not require physical
removal of the chip. Neither does it require a special device for erasure or
programming.

Flash memory (or simply flash) is a modern type of EEPROM invented
in- 1984, Flash memory can be erased and rewritten faster than ordinary
EEPROM, and newer designs have very high endurance (exceeding 1,000,000
cycles). Here the entire memory contents are erased, unlike EEPROM where
partial bytes can be erased. Some standard ROM chips are shown in Table 1.3.

Table 1.3 ROM chips.

Chip Type Capacity | Organization | Speed
2716 UV-EPROM | 16 K 2K %8 450 ns
27C32-1 UV-EPROM | 32 K 4K x8 450-ns
27128-25 UV-EPROM | 128K | 16K x8 250 ns
27C040-15 | UV-EPROM | 4096 K SIZK x 8 150 ns
2864 A EEPROM 64 K K x8 250 ns
28C256-25 | EEPROM 256 K 32K x 8 250 ns
28F256-20 | Flash 256 K 22K x 8§ 200 ns
28F020-15 | Flash 2048M | 256 Kx 8 150 ns

1.6.3 Cache memory

It is a smaller, faster memory which stores copies of the data from the most
frequently used main memory locations. SRAMSs are used as cache memory,
since they are faster than DRAMs.

1.6.4 Memory Latency

It is the time between initiating a request for a byte or word in memory, until it
is retrieved. If the data are not in the processor’s cache, it takes longer to obtain

16 The 8051 Microcontroller

them, as the processor will have to communicate with the external memory
cells. Latency is therefore a fundamental measure of the speed of memory: the
less the latency, the faster the reading operation. -

1.7 Computer Architecture: Von Neumann and Harvard

Every computer needs to store the instructions or code and also the data.
Depending on how these are stored in the memory and how the memory
is accessed we have two broad classifications for the architecture, namely,
Harvard and Von Neumann.

Yon Neumann Architecture: (Princeton architecture)

The block diagram of the Von Neumann architecture is shown in Fig. 1.5.

Memory h Instruction
Program ~ Data decoder
code
CPU
Address Mem
Data « - o i with
control unit :
registers
Control
Stack . >

Figure 1.5. Block diagram of Von Neumann Architecture.

- The main features of this architecture are as follows:

& [tuses asingle memory space for both instructions and data. It is also called
a ‘stored-program computer’.

& It has limited data transfer rate—called throughput—between the CPU
and memory, compared to the amount of memory. In modern machines,
throughput ts much smaller than the rate at which the CPU can work. This
seriously limits the effective processing speed when the CPU is required
to perform minimal processing on large amounts’ of data, as the CPU is
continuously forced to wait for vital data to be transferred to or from
memory.

& As CPU speed and memory size have increased much faster than the
throughput between them, this bottleneck has become more of a problem,

& Program modifications can be quite harmful, either by accident or design. In
some simple stored-program computer designs, a malfunctioning program

Computers, Microprocessors and Microcontroflers—An Introduction 17

can damage itself, other programs, or the Operating System possibly leading
to a crash. This ability for programs to create and modify other programs
is also frequently exploited by Malware (malicious software).

Most processors like 8085, 8086, M6800 etc. use this architecture.

Harvard architecture

The block diagram of a Harvard architecture system is shown in Fig. 1.6.

. Data
 Address Instruction
~ Control decoder
Pro :
gram Stack Register
memory
- 2 Data 2
CPU with _ Address _
register unit Control
4 =

b L IR e e R it

Figure 1.6. Block diagram of Harvard Architecture.

The main characteristics of this architecture are

@ Physically separate storage and signal pathways for instructions and data.
This implies that there is a separate ‘Program memory’ and ‘Data memory’.

® The characteristics of the two memories like the word width, timing imple-
mentation technology, and memory address structure and size can be
different.

& In some systems, instructions can be stored in ROM while data memory is
generally RAM. In some systems, there is much more instruction memory
than data memory, so the size of instruction addresses are much larger than
data addresses. (For example we can have 10 K bytes allotted for instructions
and 2 K for data).

@ The CPU can both read an instruction and perform a data memory access at
the same time, even without a cache memory. A Harvard architecture com-
puter can thus be faster for a given circuit complexity because instruction
fetches and data access do not use a single memory pathway.

Harvard architectures are also frequently used in:

@ Specialized Digital Signal Processors DSPs, commonly used in audio or
video processing products.

18 The 8051 Microcontroller

& Most general purpose small microcontrollers used in many electronics
applications, such as the PIC microcontrollers by Microchip Technology,
Inc., and AVR by Atmel Corp. These processors are characterized by hav-
ing small amounts of program and data memory, and take advantage of the
Harvard architecture and RISC so that most instructions are executed within
only one machine cycle.

1.8 Evolution of microcontrollers—4-bit to 32-bit

Different applications demand microcontrollers that offer the right amount of
functionality at minimum cost. A single microcontroller design is not pos-
sible to meet all the demands economically. Additional functions have been
incorporated on-chip such as

@ A/D converters which can convert an analog signal to a digital signal.
@ Serial data communication—Synchronous and asynchronous.

& Watch dog timers which reset the controller if the program hangs.

& Pulse width modulation. '

@ Phase locked loops, used for synchronous communication.

@ External bus controllers.

1.8.1 Selection of a microcontroller

There are a wide variety of microcontrollers available in the market. Programs
written for one will not run on others. The choice of the microcontroller is

determined by three parameters;
(1) Tt must perform the required task efficiently and effectively. Here we
consider the following during selection:
& Speed |
@ The memory on chip—both ROM and RAM ‘

@ Packaging-—the number of pins and the packaging format. This
determines the required space and assembly layout.

w Power consumption.

@ The number of I/O ports available.
@ Ease of upgrading.

& Cost per unit.

Computers, Microprocessors and Microcontrollers—An Introduction 19

(i1) Ease of product development. This includes the availability of software
development tools like assemblers, compilers, debuggers, emulators,
simulators etc.

(111} Awvailability and reliable source for the microcontroller.

1.8.2 4-bit microcontrollers

These microcontrollers are widely used. The number of pins of a chip depends
on the data size, commonly handled by the microcontroller. Hence, 4-bit
microcontrollers are compact. They are cheapest smart-chips available in the
market and used in LED/LCD display drivers, portable battery chargers, etc.
Examples of 4 bit microcontrollers are 2902 Slice { Altera); M34501 (Renasas);
ATAMRB62-3, ATAMBG62-4, ATAMB62-8 (ATMEL).

1.8.3 8-bit microcontrollers

. They are the most popular and widely used microcontrollers in the market
today with a number of companies manufacturing them. Eight bit data word

- has been found adequate for a number of control applications. 8 bit controllers
can have 256 decimal values. Further, the ASCII code is 8 bits long, making
this size effective for serial data communication. Another incentive is the fact
that most low-cost memory chips store one byte per memory location and
hence can be easily interfaced with the microcontroller.

The most popular amongst the 8-bit microcontrollers is the 8051 series. It
was developed by Intel in 1980 for use in embedded systems. Today it has
been superseded by a vast range of faster and functionally enhanced 8051—
compatible devices manufactured by many companies including Atmel,
Maxim integrated products, Philips semiconductor, Nuvoton, Silicon labora-
tories, Texas instruments and Cypress semiconductor. Intel refers to its 8051
series as MCS-51. Two other members of 8051 family are 8031 and 8052.
8031 1s a cut down version of the original Intel 8051, without internal ROM
memory. The 8052 is an enhanced version of the original 8051, with increased
internal ROM and RAM. A comparison of the features of 8031, 8051 and 8052
is given in Table 1.4, |

Variations include providing A/D and D/A converters on-chip, Flash and
EEPROM on-chip and differences in ROM sizes. Dallas semiconductors
has a range of 8051/8052 versions of microcontrollers differing mainly
in the on-chip ROM and RAM size like DS89C420/30 which has 16K
flash memory, 256 bytes of RAM and DS80C320 which has no ROM and
only 256 bytes RAM. Similarly Atmel corporation has many versions like
AT89C51, etc.

20 The 8051 Microcontroller

Table 1.4 .
Feature 8031 | 8051 | BOS2
On chip ROM (bytes) | 0 4 K 8K
On chip RAM (bytes) | 128 128 | 256
Timers 2 2 3
[/O Pins 32 32 32
Sernal port 1 1]
[nterrupt sources 6 6 8

Some of the current trends in design of processors and controllers are to
include pipelining, superscaling and out of order execution. In pipe lining, an
instruction is executed in a number of stages at the same time, to increase the
execution speed. Data path is split into a number of different functional units
and multiple instructions can use the data path at the same time. Superscaling
is used with parallel processing of instructions which permits more than one
instruction per clock cycle. Instructions can also be fed into the processor, not

. necessarily in the same sequence as which they are executed. This 1s called
out of order execution. This optimizes hardware-software utilization. Motorola
uses this.

1.9 Summary

In this chapter you have been introduced to the terms commonly used in com-
puting systems. A brief history of microprocessors and microcontrollers has
been given, to familiarize the reader with the evolution of computing systems.
RISC and CISC processors provide the user with a choice to give priority to
speed or simplicity. The instructions and data are all stored in memory. They
can be stored in the same memory like in Von Neumann architecture or in
separate memory like in Harvard architecture. The reader is now ready for a
detailed discussion of 8051, in the coming chapters!

1.10 Questions

. List the differences between microcontrollers and microprocessors.

. What are the basic units in a digital computers?

. Elaborate on Princeton and Harvard architecture used in processors.

1

2

3. List some common applications of microcontrollers.

4

5. Discuss the differences between RISC and CISC computers.

Computers, Microprocessors and Microcontrollers—An Introduction 21

© ® o2 o

10.

Describe the basic unit of a ROM and RAM.

What are the different types of RAM and ROM available?
Define memory latency.

Distinguish between assembly language and high level language.

What are the features which dictate the choice of a microcontroller for an
application?

Copyrighted material

Data Representation

Information stored and processed in memory or processor registers 1s always
in binary form. The binary digits can be manipulated in different ways. This
chapter deals with the representation of data in binary form and all operations
associated with it.

Learning objectives
At the end of the chapter you will be able to:

& Represent fixed point and floating point numbers in binary
& Find the complement’s of numbers

@ Perform binary arithmetic

& Know binary codes

& Perform BCD npefatinns

& Understand error detecting codes.

21

24

The 8051 Microcontroller

2.1 Introduction

Binary information in digital computers is stored in memory and the processor
registers. Control information in the form of a bit or group of bits, is used to
specify the control signals needed for data manipulation in other registers.

The data types may be classified into one of the following (i) numbers used
in arithmetic computations (ii) alphabets used in data processing (iii) other
symbols used for specific purposes. All types of data are represented in com-
puter registers in binary coded form. Binary number system is most natural for
digital systems. However, other number systems are used, especially decimal
number system, since it is familiar to people.

2.2 Number system

A number system of radix r (also called base) 1s a system that uses distinct
symbols for r digits. Numbers are represented by a string of digits. To deter-
mine the value of the number, each digit has to be multiplied by an integer
power of r and then the sum of all weighted digits taken. For example in dec-
imal system, r = 10 representing digits from 0 to 9. A number say 324.8 is
understood to represent the value,

3102 2% 10" + 4% 10° +8 x 107,

3 hundreds + 2 tens + 4 units 4 8 tenths. Similarly, any decimal number can
be interpreted to find the value it represents. In general a Number system with

radix r is given weights as follows:
Number : ---agazsaxayap-a_1a_a_3---
Value : - - 4 a3 xr3+ag xr2+a| x 1l + dyg xrﬂ-i-a_l x r1

+a_gxr‘2+~-

2.2.1 Binary system

The binary system uses a radix 2. The two digit symbols used are 0 and 1.
Generally a number is written within parentheses and the radix written as a
subscript. For example

(01100101)7; (823.6)1p and soon.

A binary number
(01100101); =0 x 27 +1x 20 4+ 1 x 29 +0x 2 +0x 23 +1x 22
+0x2 41 x2°

Data Representation 25

=04+644+324+0404+44+04+1
= (101)y0

- 2.2.2 Octal system

The octal system uses a radix 8, to represent digits from O to 7. Its weights are
powers of 8. For example

@326)g =4 x8 +3x8 +2x8%+6x8"!
6
=4%x64+3x8+2x% 1+§=(282,T5)m.

Since 27 = 8, each octal digit corresponds to three binary digits. We convert
from octal to binary and vice versa in the example next.

Example 2.1.
(i) Convert (324.7)g to binary |
(11) Convert (10100101); to octal and decimal

Solution
(1) 324.7)g =011 010 100 - 111)
3 2 4
(i) (10 100 101); = (245)g = (165)1g
2 4 5

Decimal value can be obtained as follows

Ix284+04+1x2°40+0+1x22+0+2! = (165)19

2 x 8 +4x 8 +5x8% = (165)0.

2.2.3 Hexadecimal system

The hexadecimal system uses the radix 16. The 16 symbols are the digits 0,
1,2,3,4,5,6,7, 8,9 and the alphabets A, B, C, D, E, F to represent decimal
10, 11, 12, 13, 14 and 15 respectively. Consider,

(3A2)1¢ =3 x 16> + A x 16! +2 x 16°
= (930)1p

Since 2* = 16, each Hex digit is represented by a 4-bit binary word.

26 The 8051 Microcontroller

Example 2.2.
(i) Convert (26B);¢ into binary and octal.
(ii) Convert (10011100); into hex and octal.

Solution

(i) (26B)16 = (0010 0110 1011); = 2x162+6x16'+11x16° = (619)19

2 6 B

iy — 3 2 1 0
001 001 101 Ol1 =(1153)g=1x8" 4+ 1 xB8 +5x8 4+3x8
1 1 3 3 = (619)10

(ii) (1001 1100); = (9C)16 = (156)10
5 o

(10 Q_LL 100)2 = (234)g = (156)9
2 3 4
(You can always pad with leading zeros).

Table 2.1 gives the binary coded octal numbers and Table 2.2 gives the
hexadecimal number coded in binary.

2.2.4 Conversion from decimal to radix r

Conversion from decimal to its equivalent representation in the radix r sys-
tem is carried out by separating the number into its integer and fraction part

Table 2.1 Binary coded octal numbers..

Octal number | Binary-coded octal | Decimal equivalent
0 000 0
1 001 1
2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7
10 001 000 8
11 001001 9
11 001010 10
62 110010 50
123 001010011 83
657 110101111 431

Data Representation 17

Table 2.2 Binary coded Hex numbers.

- | Hexadecimal | Binary-coded | Decimal
‘number | hexadecimal | equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 =
5 0101 5
6 0110 6
7] 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011.| 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
23 00100011 | . 35
49 01001000 | 73
E7 11100111 | 231

and converting each one of them separately. The integer part of the decimal
number is converted to base r, by successive divisions by r and accumulation
of the remainders. The last remainder forms the most significant digit. The
conversion of the decimal fraction to radix r is accomplished by successive
multiplications by r and accumulation of the integer digits.

Example 2.3. Convert (32.5);¢ into (1) binary, (ii) octal and (i11) hexadecimal
equivalent numbers.

Solution

() Binary Integer

2

[o T 5 R & B

32
16

H‘H‘-ﬂ-‘m

c O o O

— 0

(32.5)10 = (100000.1)2

Fraction

0.5x2
1.0

28 The 8051 Microcontroller

(1) Qctal
8 |£ 0.5x8
4 — 0 4.0
(32.5)10 = (40.4)g |
(i) E - 0.5 x 16
2 — 0 8.0

(32.5)10 = (20.8)16

The registers in processors contain a string of binary numbers. Specifying
the contents of the registers in octal reduces the digits by one-third and rep-
resenting by hexadecimal reduces the digits by one fourth. Consider a 16-bit
register contents, “1001000111010101%, It can be easily specified as 91D5 in
hexadecimal or 110725 in octal. Manuals generally choose the hexadecimal
system to specify contents of register.

2.3 Decimal representation

Decimal system is most commonly used by human beings, but cannot be
understood by the computer. To overcome this problem, all decimal numbers
are converted into binary numbers; operations performed in binary, and result
converted back to decimal numbers.

A common representation of decimal numbers is the Binary-Coded Decimal
(BCD). A binary code is a group of n bits which can be combined in 2"
combinations. The decimal system has 10 distinct digits, 0-9 and hence we
need 10 distinct combinations to symbolize each one of the digits. 3-bits
are insufficient since 2° = 8, with four bits we get 24 = 16, combinations.
Therefore six combinations will be redundant and go unused. We can choose 10
combinations out of 16, in a number of ways giving rise to numerous different
codes. The assignment most commonly used is the direct binary assignment
as listed in Table 2.3.

Note that the combinations from 1010 to 1111 are unassigned. Each code
can be thought of as a symbol to represent the corresponding decimal num-
ber. To get the BCD of a number, say 847, we write the codes for 8, 4
and 7 as

847 — 1000 0100 O111

Data Representation 29

Table 2.3 Binary-coded decimal numbers.

Decimal

number BCD number
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
T 0111
8 1000
9 1001
10 0001 0000
45 0100 0101
92 1001 0010

It is important to understand the difference between converting a decimal
number to binary and binary coding of the number. For example,

(16)10 = (10000)3 =1 x2* +04+0+0+0
(16)10 = 0001 0110 in BCD.
= =
1 6

2.4 Complements

Complements are used in digital computers, normally to simplify the
subtraction operation. There are two types of complements.

2.4.1 (r — 1)’s complement

Given a number N in radix r having n digits, (r — 1)’s complement of N is
defined as (r" — 1) — N. In decimal system, r = 10, r — 1 = 9. Therefore 9’s
complement is (10" — 1) — N. Now 10" is 1 followed by n zeroes. 10" — 1
will be n 9°s. For example if n = 3, 10° — 1 = 1000 — 1 = 999 (3 9%s).
Therefore the 9°s complement of a number N is obtained by subtracting each
digit from 9. - |

Example 2.4. What is the 9°s complement of (i) 834 (ii) 62937 (iii) 900,

30 The 8051 Microcontroller

Solution

(1) 9’s complement of 834 is 999 — 834 = 165
(ii) 9’s complement of 62937 = 37062
(ii1) 9’s complement of 900 = 099.

For binary numbers, r = 2andr — 1 = 1. The 1’s complement of a number
N withn bits is (2" — 1) — N. Again in binary, 2" is represented by a 1 followed
by n zeroes. For example if n = 3, 2* = 1000. So 2" — 1 is a binary number
represented by n 1’s. For example, ifn =3,2" — 1 = 1000—-1 = 111. So
the 1’s complement of a binary number is obtained by subtracting each digit
from1l. Weknow 1 — 1 =0and 1 — 0 = 1. Therefore, the 1’s complement is

simply formed by changing the 1’s to zero and (’'s to 1.

Example 2.5. Determine the 1’s complement of (i) 111 (ii) 100010 (iii)
001101.

Solution

(1) 1's complement of 111 is 000
(i1) 1’s complement of 100010 is 011101
(1i1) 1’s complement of 001101 is 110010.

2.4.2 r’s complement

The r’s complement of an n-digit number N in base r is defined as r" — N for
n # 0and 0 for ¥ = 0. It is obtained by adding 1 to the (r — 17)s complement.

Example 2.6.

(i) Find the 10’s complement of 834
(11) 2’s complement of 111
Solution

(1) 9’s complement of 834 = 165
10°s complement of 834 = 166

Data Representation 31

(11) 1’s complement of 111 is 000
2’s complement of 111 is 001.
* The 10’ complement of N can be formed by leaving all least significant

0°s unchanged, subtracting the first non zero least significant digit from 10,
and then subtracting all higher digits from 9,

* 2’s complement can be formed by leaving all least significant 0’s and the
first 1 unchanged, and then replacing 0’s by 1’s and 1’s by 0’s.

2.4.3 Subtraction of unsigned numbers using r’s complement

The subtraction of two n-digit unsigned numbers M — N (N # 0) in base r
is done as follows:

1. Add the minuend M to the r’s complement of the subtrahend. We get
M+@N—-—N)Y=M-—-N+r". .

2. If M = N, the sum produces an end carry r" which when discarded gives
M —N.

3. If M < N, the sum does not produce carry and we get r"* — (N — M)
‘which is the r’s complement of (N — M). So to get the answer, take r’s
complement of sum and place negative sign.

Example 2.7. Perform the following

(i) 34672 — 18024
(i) 18024 — 34672

Solution
(1)
M= 34672
10°s complement of N = 81976
1, 16648
i'i
discard
(i1)
M = 18024

10’s complement of N = 65328

83352

32 The 8051 Microcontroller

There is no end carry. Take 10’s complement of 83352 i.e. 16648. So answer
is —16648. '

Example 2.8. Perform the following

(i) 10110110 — 10001001
(i) 10001001 — 10110110

-
Solution
(1)
M= 10110110
2's complement of N = 01110111
1,00101101
'i-"_
discard
(11)
M = 10001001

2’s complement of N = 01001010
No carry 11010011

Take 2’s complement of result i.e. 00101101, Answer is —00101101.

In the above examples we were dealing with unsigned numbers. We need a
method to represent negative numbers.

2.5 Fixed-Point representation

Positive integers including zero can be represented as unsigned numbers. We
need a notation to represent negative integers. In our arithmetic we indicate a
negative number by a minus sign. Now we however need a notation in terms of
1’s and 0’s. As a convention, it is customary to represent the sign of a number
with a bit placed in the leftmost position of the number. The sign bit is equal
to 0 for positive numbers and 1 for negative numbers.

We also have to position the point to separate the integer and fraction part.
The binary point cannot be stored in a register. The point can be specified by
giving it a fixed position, by assuming it is always fixed in one position. The
point can be in the extreme left of a register, in which case the stored number is

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

34 The 8031 Microcontroller

2.5.2 Arithmetic addition of signed numbers

The negative numbers are represented in the 2°s complement form. The rule
is as follows: Add the two numbers, including their sign bits, and discard
any carry out from most significant bit. If the sum is negative, it is in two’s
complement. Lets consider the following examples

(a) (+6) +(+13)

+6
+13

0, 0000110
0,0001101

+19

0,0010011

(b) (+6) +(=13)

+6
—13

0,0000110
1,1110011

-7

1, 1111001

*

2’s complement of - 7

(c) (—6) + (+13)

-6
+13

1, 1111010
0,0001101

+7 10,0000111

+

Discard

(d) (—6)—1(—13)

-6
~13

1,1111010
1, 1110011

—19 11,1101101

¥

Discard

+130,0001101
~131,1110011

Data Representation 35

Now lets consider another example

(+70) + (60)

+70 0, 1000110
+60 0, 0111100

1, 0000010

Here we see that the result which should have a positive number, 1s a negative
number as the sign bit is 1. If we consider the result to be 9-bit including carry
out as 010000010, it is 4-130, which is correct. But the 8-bit register cannot
hold this! We say an overflow has occurred. The reason is the largest 8-bit
positive number which can be represented is 0,1111111 which is +127. The
result +130 is greater than this. The overflow is detected by EXOR operation
of carry 1nto sign bit and carry out of sign bit. Overflow occurs only 1f we add
two positive numbers or add two negative numbers.

2.5.3 Arithmetic subtraction of signed numbers
The rule for subtraction is as follows:

@ Take the 2’s complement of subtrahend including the sign bit
& Add it to the minuend, including the sign bat
& Dascard 1f there 1s any carry.

Consider 23 — 12

23 0, 0010111 |[+12 0, 0001100
—~12 1, 1110100 | -12 1, 1110011 +1=11110100

+11 1 0, 0001011

}
Discard
Now consider 70 — (—60). We now follow the same rule.

e
70 0,1000110

60 0,0111100 *Take 2's complement of
1.0000010 —60, which is +60.

Again overflow has occurred. It is again detected by EXOR of carry into sign
bit and carry out of sign bit.

36 The 8051 Microcontroller

2.5.4 Decimal fixed-point representation

[f we use the BCD code, each decimal digit would require 4-bits. For example
1348 would be stored as 0001 0011 0100 1000. Decimal representation needs
more storage space since number of bits is greater than that needed for its
binary representation. The hardware required to perform decimal arithmetic
is also more complex. The signed representation uses 4-bits to conform with
BCD code. A plus is normally designated with four 0’s and a minus with the
BCD equivalent ot 9, 1001. Negative numbers are represented by their 10’s
complement.

BCD addition

The addition of two BCD numbers may not represent an appropriate BCD
value. For example consider adding (34)gcp and (27)gep.

(34);0 0011 0100 BCD
(27)10 0010 0111 BCD

(61);p 0101 1011 5BH

The result is SBH. The reason is that the CPU can perform only binary
addition. In BCD, any number larger than 9 is invalid and needs to be adjusted
by adding 6 in binary. In the previous problem we add 5B -+ 06,

5B 0101 1011
06 0000 0110

0110 0001 = 61gcp.

We need to adjust to get BCD sum using the fr;}]lnwing rules for 2 digit BCD
numbers: |

(1) Add 06 if the sum of the first two BCD digits (lower nibbles)is greater
than nine or if there is carry out from bit position three to bit position 4.

For example consider 49,9 + 219

49, = 0100 1001 BCD
2l = 0010 ﬂqnl BCE_.Greaterthaug
7010 0110 1010 6AH

+ﬂﬁ_ﬂﬂﬂﬂ 0110 =— Correction
G111 0000 7Ogep

Data Representation 37

Consider 49,y + 281p

e

49, = 0100'1001 BCD
28, = 0010 1000 BCD
7T 0111 0001 71H =— Carry from

lower nibble to

+06 0000 0110 upper nibble

0111 0111 77gcp

(11) Add 60 if neither of the conditions in (i) occurs and the sum of the upper
nibbles is greater than 9 or there 1s a carry out of upper nibble. Lets
consider two examples 949 + 1219 and 94,y + 829 to illustrate this.

9444 10010100 BCD
+1210 00010010 BCD

10619 10100110 Ae6H
+60 01100000

1,00000110 06 BCD with carry

949 10010100 BCD
8210 10000010 BCD

17610 1.00010110 06H
160 01100000

1,01110110 76 BCD

(iii) 66 is added whenever the conditions in (i) and (ii) are satisfied. Consider
9910 + 711p.

9910 1001 1001 BCD
Tlio 0111 0001 BCD

1,701 1,0000 1010 0AH
+66 0110 0110

1,0111 0000 70 BCD

We add 66 because the sum of lower nibbles is greater than 9 and there is carry
from the upper nibble.

IR The 8051 Microcontroller

2.6 Floating-point representation

The floating-point representation has two parts. The first part represents a
signed, fixed-point number called the mantissa. The second part designates
the position of the point (decimal or binary) and is called the exponent. The
fixed-point mantissa may be-a fraction or an integer. Consider the decimal
number 823.51 which can be written as follows |

Fraction Exponent
+0.82351 +03

The value of the exponent indicates that the actual decimal point is three
positions to the right. Floating-point is always interpreted as

m xre.

Only the mantissa m and the exponent e are physically represented in the

registers (including their signs). The radix r and position of the point are
always assumed.

A floating-point binary number is similarly represented. Consider a number
+1101-11, to be represented by a 8-bit fraction and a 6-bit exponent. We
represent it as follows:

Fraction Exponent
01101110 000100
4 {

Sign bit of fraction Sign bit of exponent

The floating point number is equivalent to

m x 2° = +(-1101110); x 24

Arthmetic operations with floating-point number are more complicated than
arithmetic operations with fixed-point number. Their execution takes longer
time and requires more complex hardware. Most computers have the capability
to perform floating point arithmetic.

2.7 Other binary codes

Though the BCD code for decimal numbers discussed in the last section is
very popular, there are other codes available, which have other applications.
We shall discuss few of the popular ones.

Data Representation 39

2.7.1 Gray code

Gray code belongs to the class of codes referred to as unit-distance codes. The
basic property of a unit-distance code is that only one bit changes between
two successive integers which are being coded. The code is extremely use-
ful in analog-to-digital conversion. It is also used to provide the timing
sequences that control the operations in a digital system. The Gray code
1s a counter whose flip-flops go through a sequence of states, specified in

Table 2.4.
Table 2.4 Gray code.

Decimal Decimal

number | Gray code | number | Gray code
0 0000 3 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
4 0110 12 1010
5 0111 13 1011
6 0101 14 1001
7 0100 15 1000

2.7.2 Other decimal codes

Binary codes for decimal digits require a minimum of four bits. Numerous
codes can be formed choosing 10 of the 16 combinations of four bits. Some
popular codes are listed in Table 2.5.

2421 and excess 3 codes are examples of self complementing codes. In
them, the 9’s complement of a decimal digit is obtained by replacing the 1’s
with 0’s and 0’s with 1’s in the binary code.

8421 and 2421 are weighted codes. The bits are multiplied by the weight
of the position and the sum of these taken to obtain the decimal digit. For
example consider the following:

& In8421, 1001 =83 x14+0+04+1x1=9
In2421, 1011 =2x14+0+2x14+1x1=5

The excess three code is an example of an unweighted code. Its binary
code is obtained from the corresponding BCD binary number after addition of
binary 3 (0011).

40 The 8051 Microcontroller

Table 2.5 Binary codes for decimal digits.

Decimal
digit BCD 8421 | 2421 | Excess -3 | Excess-3 Gray
0 0000 0000 | 0011 0010
1 0001 0001 | 0100 0110
2 0010 0010 | 0101 0111
3 0011 0011 | 0110 0101
4 0100 0100 | 0111 0100
5 0101 1011 | 1000 1100
6 0110 1100 | 1001 1101
7 0111 1101 | 1010 1111
8 1000 1110 | 1011 1110
9 1001 1111 | 1100 1010
Unused 1010 0101 | 0000 0000
combination | 1011 0110 | 0001 0001
1100 0111 | 0010 0011
1101 1000 | 1101 1000
1110 1001 | 1110 1001
1111 1010 | 1111 1011

2.'?.3 Alphanumeric codes

Many applications of digital computers require the handling of data, consist-
ing not only of numbers, but also letters of the alphabets and certain special
characters, such as $, +, / etc. The standard alphanumeric code is the ASCII
(American Standard Code for Information Interchange) code. The earlier list,
had a seven bit code. The recent ASCII is an 8-bit code, extended to include
newer characters used with graphics. ASCII codes are shown in Table 2.6,
though the list is not exhaustive.

Another alphanumeric code used in IBM is the EBCDIC (Extended BCD
Interchange Code). Alphanumeric codes are used internally in a computer for
data-processing or externally for data transmission.

Lets consider a few examples to strengthen ‘the concepts visited in the

| chapt;:r.

Example 2.9. Convert into decimal: 101110; 1110101 and 110110100.
Solution “

@) 101110 =1x2°+0+1x2°+1x22+1x2' +0

=324+04+84+44+240
= (46)10 |

Data Representation 41

Table 2.6 ASCII code.

Character Binary code | Character | Binary code
A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 f 011 0110
H 100 1000 7 011 0111
I 100 1001 8 011 1000
] 100 1010 9 011 1001
K 100 1011 0 011 0000
L 100 1100 011 1110
M 100 1101 Space - 010 1000
N 100 1110 : 010 1001
0 100 1111 (010 1011
P 101 0000) 010 1101
Q 101 0001 + 0100100
R 101 0010 & 010 1010
S 101 0011 $ 010 1111
J o 101 0100 * 010 1100
U 101 0101 / 011 1101
\Y 101 0110 , 001 0000
W 101 0111 - 001 0000
X 101 1000

Y 101 1001

Z 101 1010

(11) .
1110101 = 1 x 2% + 1 x 22 + 1 x2* +04+1x 22 +0+1
=64+324+16+0+44+0+1
= (117)10
(iii)

110110100 = 1 x 28 + 1 x 2" +0+1x 22 +1x 2 +0+1 x 22 + 0+ (
=256+ 128+32+16+4
= 436.

Example 2.10. Convert the numbers indicated to decimal (i) (12121)3 (ii)
(4310)s (111) (50)7 (iv) (198)12.

42 The 8051 Microcontroller

Solution
(i)

(1212 = 1 x3*+2x P +1x3P+2x31 41 %30
=81+54+9+6+1= (15D

(ii)
(@310)s =4 x 5> +3x52+1 x5 +0
= 500 + 75 + 5 = (580) 10
(iif)
(50)7 =5x7 +0= (350
(iv)

(198)15 =1 x 122 4+9x 12! +8 x 12°
= 144 + 108 + 8 = (260) 10

Example 2.11. Convert the following decimal numbers to the specified bases
(i) 7563 to octal (ii) 1928 to Hex (iii) 175 to binary.

Solution

@) N
8 | 7563 = (16613)g
8 945 — 3
8§ 118 — 1
814 — 6

(R—

(i)

- 16 [1928 = (788)16
16 120 — 8

7 =3

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Data Representation 45

(5) Add (835)pcp to (695)scp. Let the result be in BCD.

(6) Represent —82 in three different ways.

(7) Define with example the condition of overflow.

(8) Specify some commonly used binary codes for decimal numbers.

(9) What does the number 9AH represent in unsigned representation,
signed—magnitude, signed 1’s complement and signed 2’s complement.

(10) Convert BCD 54H to ASCIL

Copyrghted material

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

8051 Architecture 51

3.3 Pin diagram of 8051

The pin diagram of 8051 and the assignment (function) of each pin is shown
in Fig. 3.3. Some pins have dual assignments. The chip has 40 pins, and 64
functions. Therefore, 24 pins have dual functions. -

rpro 1 U 40 B vee
r11 2 39 =1 PO.OJADO)
r12 (33 38 1 PO.1{ADI)
r1.3 4 8051 37 | P0.°(AD2)
Pl.4 E 5 2031 36 g PO.3{AD3)
P1.5 6 35 PO.4{ ADM)
r1.e (7 () 34 [POS(ADS)
p1.7 (s 33 [PO.6(ADS)
rsT o 32 2 poADT)
(RXDP3.0 o 11 = EA/VEeP
w31 En 30 (3 ALEFROG
(INTOyP32 2 29 = PSEN
(iNTHP3.3 13 % (3 P27(ALS)
(TOP3.4 14 27 [P2.6iAld)
(TIp3.s Q15 26 3 P2.5(A13)
(wWrppss s 25 3 P2.4(A12)
(D37 i 24 P2.3(Al1)
xTaL: s 23 P2.2(A10)
xTaLl 19 22 P2.1{AY)
aNp X2 21 P2.OAS)

Figure 3.3. Pin diagram of 8051.

The program instructions or the physical connection at the pins determine
their assignment and how they are used. It is to be noted that in 8051, the
address bus is made of 16 lines. The lower-order byte of the address and the
data bus share the same lines, designated ADy — AD7. The higher order byte
is carried on Ag — A 5. The Address Latch Enable (ALE) signal determines 1f
the lines ADg — AD7 are used for the address or data. If ALE is high then the
lines are used to transfer the lower order byte of address. If ALE is low, then
the lines are used for data transfer.

A detailed discussion of all the pins, will be done at the end of the chapter,
after the reader gets familiar with the hardware.

3.4 Clock and Machine cycle for 8051

All internal operations of the 8051 are synchronized by the clock pulses. In
most microcontrollers there is built-in circuitry which allows a simple con-
nection of a crystal or ceramic resonators or an external clock source. Some
microcontrollers have an internal ring oscillator, which permits them to run
without any external clock source. The typical quartz crystal with capacitors
is shown in Fig. 3.4.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

54 The 8051 Microcontrofler

3.5.1 Program Counter (PC)

The program counter is a 16-bit register. The PC points to the address of the
next instruction to be executed. The instructions (opcodes) are fetched from
the memory location addressed by PC. After the CPU fetches the opcode, the
PC is automatically incremented to peint to the next instruction. In 8051, on
chip ROM is available for addresses from 0000H to OFFFH. If the memory
exceeds OFFFH, then the memory chip has to be externally interfaced with
8051. Since PC is 16-bits wide, 8051 can access programs from address 0000H
to FFFFH, a total of 64 K bytes of code. The contents of the PC may be altered
by certain instructions like CALL, RET etc. (more about this when we deal
with instructions). The PC is the only register which does not have an internal
address. By default the PC 1s set to 0000H on reset of the microcontroller. This
means that it expects the opcode of the first instruction to be stored at ROM
address 0000H. For this reason in the 8051 system, the first opcode must be
burned into memory location 0000H of program ROM.

3.5.2 Data Pointer (DPTR)

The data pointer is a 16-bit register, made of two 8-bit registers called DPH
(High) and DPL (Low). It is an index register that provides access to external
memory. DPH and DPL hold the higher order byte and lower order byte of
the address. In the instructions, DPTR can be specified as a 16-bit register, or
it can be specified individually as an 8-bit register (DPL or DPH). The DPTR
does not have a single internal address. DPH and DPL are assigned internal
addresses separately (DPH-83; DPL-82).

3.5.3 A and B registers

These two 8-bit registers hold the result of many arithmetic and logical opera-
tions of the CPU. The Accumulator (A) is used in many operations, including
addition, subtraction, integer multiplication, and division, and Boolean bit
manipulations. It i1s a bit-addressable register, meaning that each bit of the
accumulator can be accessed for reading or for altering, The A register is also
used for all data transfers between 8051 and any external memory. The rdgister
B may be used as a location where data may be stored. It is also used with
register A for multiplication and division operations and has no other function.

3.5.4 Program Status Word (PSW) register

The program status word register is an 8-bit register. It is also referred to
as the flag register. It indicates certain conditions like carry, parity, sign etc.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

58 The 8051 Microcontroller

In instructions, the SFR’s can be addressed by their functional names or by
their addresses. The other SFR’s like PCON, TCON, TMOD etc, will be dealt

with in the relevant sections.

3.6 The 8051 internal memory

A computer/microprocessor/microcontroller must have memory to store pro-
gram codes and also data. The 8051 has internal ROM and RAM memory. It
has a Harvard architecture which uses the same address in different memory
locations for code and data. It can be interfaced with additional external mem-
ory also. The internal circuitry accesses the correct memory segment, based
on the instruction being executed.

3.6.1 Internal RAM

The 8051 has 128 bytes of internal RAM. This is shown in Fig. 3.7.
The RAM is divided into three segments: | |

& Register banks: There are four register banks, each with eight registers,
which make up 32 working registers, with address from 00H to 1FH. The
register banks are numbered 0 to 3. The selection of the register bank 1s
done by the RS1 (PSW.4) and RS0 (PSW.3) bits. The eight registers are
named RO to R7. After selection of the bank, the particular register in the
bank can be addressed by its name (RO to R7) or by its address. Register
banks which are not selected can be used as general purpose RAM. Reglster
bank 0 is selected by default on reset. |

& Bit/byte addressable RAM: The 16 bytes of RAM from address 20H
to 2FH are also bit addressable. This means that each of their bits can be
addressed individually. This forms a total of 128 (16 x 8 = 128) addressable
bits. Each bit has a unique address from 00H to 7FH. It is important to know
the difference between the bit address and the byte address. A few examples
are listed below (refer Fig. 3.7).

o 17H is the bit address of the bit 7 in byte address 22H.
o 30H is the bit address of the bit 0 in byte address 26H.
o 69H is the bit address of the bit 1 in byte address 20H.

Addressable bits are very useful in control of binary events (like switching
on or off a switch). They save on precious RAM memory since using a byte
instead of a bit, would be inefficient. The instructions specify whether to
access the byte address or bit address.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

8051 Architecture 75

Mode 0 operation
TLX THX
Can pre-load
to any value —— 00 00H Countup by 1
by software ' on every clock cycle
00 01H
[]
IF FFH
Resets after
11111 (31d)
| 00 00H

Figure 3.16. Mode 0 operation.

Example 3.18. What is value of TMOD to run Timer 0 in mode 1 with
external control and Timer 1 in mode 2 as a counter?

Solution First set TRO = 1; TR1 = 1. This initializes both timers to ON
state. |

TMOD = 09H + 60H = 69H.

3.8.5 Timer modes

Mode 0: In mode 0, the timers are used as 13-bit timers. In recent devel-
opment, 8051 is not used in this mode. In 13-bit mode TLX (X = O or 1
representing Timer 0 or Timer 1 respectively), is incremented from 00000000
(0d) to 00011111 (31d). When incremented from 31d, it will reset to “07.
Thus, only 13-bits of the 16-bits are used—bits 0—4 of TLX and bits 0—7 of
THX. This means that the timer can count 2'* = 8192 values. If we initialize
it to 0, then it will reset after 8192 machine cycles. This is shown in Fig. 3.16.
In all modes of operation, when the Timers reset, a flag is set in the TCON
register (to be discussed in next section) i

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

8051 Architecture 79

Read latch
4 TBI External pull-up
~ resistor
- P0.X
Internal T D Q | Pin
CPU bus J P0O.X —{
K Q
Write to latch] .\—\7
2 e
Read pin

Figure 3.18. Port 0 connection.

any signal connected to the input pin and the input signal is therefore directed
to the tri-state buffer TB1. So when we read the port, we are in essence reading
data present at the pin.

The pull-up resistors will supply a logic high when PO is used as an output
port. Each I/O line can be independently used as an input or an output. It
cannot be used as a general purpose /O when being used as address/data bus.

3.9.2 Port1 (P1: Address 90H)

This is an 8-bit input/output port. It is also bit-addressable. The addresses are
shown in Table 3.8.

Table 3.8 Port 1 bits.

Hex byte
address Bit address Symbol
90H 97 06 05 Y4q 93 92 91 90 Pl

PL7|Pl6|PL5 | P14 |PL3 | P12 P11 |PLO |PlX

This port does not need any external pull-up resistors since they are available
internally. Like PO, to configure P1 as an input port, a 1 must be written to all
the bits required to act as inputs. Figure 3.19 shows port 1 connections.

3.9.3 Port 2 (P2; Address AOH)

This is an input/output port. It is also bit addressable. It has built-in pull up
resistors.. Like in Port 1, it must first be programmed by writing 1 to all bits
required to be an input. The bit addresses are given in Table 3.9.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

106 The 8051 Microcontroller

4.2.2 Steps to create an ALP

The step's in creating an ALP are as shown in Fig. 4.1.

Editor program

User file .asm

i

Assembler program

L User file .Ist
User file .obj
f

Other obj files —_]

Linker program

User file .abs

v

OH program

l

User file .hex

Figure 4.1. Steps to create an ALP.

Step 1:

Step 2:

Step 3:

We first use a text editor to type the ALP. Here, we assume that the
programming is done via a personal computer. Common text editors
are MS-DOS EDIT, NOTEPAD, MS-WORD etc, which are used to
create and edit files. The editor, must be able to produce an ASCII
file. Standard assemblers use an extension of ‘.asm’ or “.src’, for the
source file. For example we can have a source file “program.asm” or

“program.src’.

The “.asm” file created in step 1, which is the program code, is fed
to the 8051 assembler. As mentioned earlier, the assembler converts
the instructions into machine code. The assembler produces a file,
called the object file and another file called the list file. These files
have an extension of “.ob” (program.obj) and “.lst” (program.lst)
respectively.

The list (.1st) file, is useful to the programmer (it is optional). It lists
all the opcodes and addresses, as well as errors that are detected by
the assembler. This file can be accessed by the text editor, displayed
on the monitor or printed to obtain a hard copy. They are useful in
finding the syntax errors. After these errors are corrected, the “.obj”
file is sent as input to the linker program.

The link program takes one or more object files and produces an
absolute object file with an extension “.abs”.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

110 The 8051 Microcontroller

.
I
pa—
=

Display A
Decrement A

Figure 4.2. Flow chart.

3. If A = 0, end the program
Else display A

4. Decrement A

5. Go to step 2.

It can be seen that both flow charts and algorithms, help in understanding
the sequential steps of the problem, the decisions involved, the flow of data etc.
Since, they are independent of the language (the same flow chart can be used
to code in any assembly language or high-level language), they are portable,
convey the logic of the problem and act as a guide to code the problem in any
suitable language.

4.4 8051 data types and directives

The 8051 microcontroller has only one data type: an 8-bit binary data. The
size of each register is 8-bits. If data of larger sizes are to be handled, they
have to be broken into 8-bit data which can be processed by the CPU. Signed
or unsigned arithmetic can be used.

4.4.1 Directives

An assembler is a program, to translate the ALP to machine language. Like
any other program, it has its own programming language and syntax, which

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

114 The 8051 Microcontroller

6. MOV DPH, #23H i
7. MOV Pl, #55H ;
8. MOV TMOD, #10H ;

Now consider

MOV DPTR, #2FFF0Q H

This would produce an error because the value is larger than 16-bits. We can
use EQU directive to access data immediately as follows:

TIME EQU 40

MOV TL1, #TIME;TL1l = 28H (hex of 40)

4.5.2 Register addressing mode

This involves the use of registers to hold the data to be manipulated. Both the
source and destination are registers and their sizes should match. The general
format is

MOV Ra, A
MOV A, Rb

where Ra and Rb are restricted to A, DPTR (DPL and DPH) and RO-R7 (of the
selected bank). These registers are accessible by name. Other registers in 8051
may be addressed in the direct addressing mode. Here are some examples:

1. MOV A, Rl ;Move contents of register R1 into A
2. MOV R3, A :Move contents of A into R3
i. MOV R7, DPH :Move contents of R7 to DPH
4. MOV DPL, R2 :Move contents of R2 to DPBL

#® We can move data between accumulator and Rn (n = 0 to 7) but movement
between Rn registers is not allowed.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

118 The 8051 Microcontroller

(i1) Lets use register addressing with accumulator.

MOV A, #22H
MOV RO, A
MoV R1, A
MOV RZ2, A

bl] = = -

The first instruction i1s two bytes and the remaining ones are one byte. We
have 5 bytes, 4 lines.

(111) Lets use direct addressing.

MOV RO, #2ZH :

MOV 01H, 00H ;) Move contents of location 00H

MOV 02ZH, 00H ;1 (address of R0O) to 01H (R1)
and 02H (R2)

The first instruction is two bytes. The direct address instruction is three
bytes

(opcode 4+ first address + second address) .

We therefore have 8 bytes, 3 lines.

4.5.4 Indirect addressing mode

The indirect addressing mode uses a register to hold the actual address which
contains the required data. In other words, the contents of the register is a
pointer to the data address. If the data is inside the CPU then, only registers
RO and R1 are used as pointers. R2-R7, cannot be used. When R0 and R1 are
used as pointers, they must be prefixed with ‘@’ symbol. Consider

MOV A, ®R0 ;Move the contents of RAM location whose address
:i8 in RO to A :

Example 4.5. What does the following code segment do?

MOV 40H, #55H ;
MOV R1, #40H ;
MOV A, @R1 ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

122 The 8051 Microtontroller

Solution gp js initialized at 07H. First two instructions load 33H and 22H
into R3 and R2 respectively. Stack is changed as below.

0B OB 0B
. OA 0A 0A
Address 09 09 09 22
08 08 33 08 33
Start SP = 07TH : SP=08 SP=09
(increment before
pushing)

4.6.2 PQP instruction

A POP operation copies data from the stack to the destination address. The
data is copied and then SP is decremented.

POP data to destination
@ Decrement SP.

Example 4.8. Examine contents of stack and show how data is popped and
the contents of SP.

POP 02H
POP 0O1H
POP O00H
Solution
OB | SB —~POP OB 0B | 5B OB | 5B
0A | SA DA | 5SA —~POoPp 0OA | 3A DA | 5A
09 | 59 g | 59 09 | 59 |~POP 09 | 59
D8 | 58 08 | 58 08 | 58 08 | 58
Original After POP (2 After POP 01 After POP 00
SP=(0BH " R2=5B R1=35A RO =59
SP=0A SP=09 SP =08
Note

& Stack starts at location 07H by default.

& We can use 08H to 1FH (24 bytes) in RAM for stack. Locations 20-2FH
should not be used since they are bit-addressable. '

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Assembly Language Programming Il — Arithmetic and Logic Operators - 137

Note the following:

& The status of carry flag indicates a result greater than 8 bits. This status is
~ important when we are using unsigned numbers.

& The overflow flag indicates that the range of signed number representation
has been exceeded. (Even though result may be 8-bits.) The status of this
flag is important when dealing with signed numbers. '

5.3 Incrementing and Decrementing

Two instructions are available for incrementing and decrementing the contents
of a register or a memory location by 1.

The complete list of Increment and Decrement operations are given below.

Mnemonic Operation

INC A :Add 1 to accumulator

INC Rn ;Add 1 to Register Rn

INC @Rp | :;Add 1 to location whose address is in Rp

INC addr | :Add] to contents of direct address ‘addr’

INC DPTR | ;Add 1 to the 16-bit contents of DPTR

DEC A :Subtract 1 from A

DEC Rn ;Subtract 1 from Register Rn

DEC @Rp | ;Subtract 1 from location whose address is the Rp
DEC addr | ;Subtract | frp, contents of direct address ‘addr’
DEC DPTR | ;X does not exist

Note

& INC and DEC instructions do not affect Math flags.

& If the contents are FFH and i.t 1s incremented it overflows to 00H.

@ If the contents are 00H and it is decremented it underflows to FFH.

@ DPTR overflows flow OFFFFH to 0000H.

W If the direct address ‘addr’ is a port address the latch of the port is altered.

Example 5.4. Consider a series of operations listed below and what they do.

1 MOV A, #23H ;A =23H
2 DEC A ;A=22H

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

150 The 8051 Microcontroller

5.9.2 OR operation

Here two words are ORed. The corresponding bits of the two words are ORed.
The instructions are as follows:

Mnemonic Operation

ORL A,#n OR contents of A with immediate byte #n. Store result
in A. |

ORL A, @Rp | OR contents of A with contents of direct address stored
- in Rp. Store result in A.

ORL A, addr | OR contents of A with contents of direct address addr.
Store result in A.

ORL A,Rn | OR contents of A with contents of register Rn. Store
result in A.

ORL addr, A | OR contents of A and contents of direct address addr.
Store result in addr. |

ORL addr, #n | OR contents of direct address addr and byte #n. Store
result in addr.

5.9.3 Exclusive OR operation

Here two words are exclusively ORed which means the corresponding bit
positions of the two words are exclusively ORed. The instructions are:

Mnemonic Operation

XRL A,#n Exclusive OR contents of A with immediate byte #n. Store

result in A. :
XRL A, @Rp | EXOR contents of A and contents of direct address in Rp.
Store result in A.
XRL A, addr | EXOR contents of A and contents of direct address addr.
: Store result in A.

XRL A,Rn EXOR contents of A and contents of Rn. Store result in A.
XRL addr, A | EXOR contents of A and contents of direct address addr.
Store result in addr

XRL addr, #n | EXOR contents of direct address addr with immediate
byte #n. Store result in addr.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

154 The 8051 Microcontroller

Solution

(1) The first instruction ANDs contents of port P0 latch with OFH, since P0
is here the destination. Therefore we have PO AND OF, which turns off
the upper nibble of P0, turning those transistors off. The result is stored

in latch of PO.

(i) Here PO is the source. Hence the pin data is read. Since they are all at

ground level, the pin data will be 00H. Hence

ANL - A, PO

ANDs accumulator with 00H. Hence A = 00H.

5.10 CLEAR and COMPLEMENT accumulator

Two instructions are exclusively used with the accumulator.

5.10.1 Clear accumulator

The contents of the accumulator are cleared. Each bit is made 0.

Mnemonic

Operation

CLR A

Clear each bit of A to 0.

This is equivalent to MOV A,#00H. This 1s a two byte instruction whereas

CLR A is a one byte instruction.

5.10.2 Complement accumulator

Every bit of accumulator is complemented. i.e. a 0 is made 1 and a 1 is made 0.

Mnemonic

Operation

CPL A

Complement every bit of
accumulator.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

162 The 8051 Microcontroller

Solution The figure below explains the task on hand.

8051
; PO
Onebit __ p12 :|>(a bits)
at a tme '
The program is explained below.

Mnemonic Operation

MOV R0, #08 | ;Move the count to R0.

SETB Pl1.2 :Recollect that a port pin must be made 1 to act as
input pin. P1-2 is made to act as input pin.

Here: MOV C,Pl.2 | ;Datais moved from P1-2 to CY

RRC A ;CY goes into A

DINZ RO, Here | ;Repeat the process till RO is zero (8 times). At
the end the entire byte is in A. '

MOV PO, A

End

5.13 Swap operation

The swap instruction works only on the accumulator.

Mnemonic | Operation

SWAP A | :It swaps the lower nibble and upper nibble of A.

Ar—Ay | A3—Ay Az—Ay | A-Ay
Before swap After swap

Example 5.29. What are the contents of the accumulator on execution of the
following code scgment? -

MOV A, #3BH
SWAP A

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

172 The 8051 Microcontroller

& No flags are affected unless the bit b in the instruction JBC is a flag bit in
PSW.

@ In JBC if the bit addressable bit b is a port bit, the port latch is read, tested
and altered (Remember, read, modify and write?)

Example 6.1. Consider the following code segment:

MOV A, #20H ;

MOV RO, A :
HERE: ADD A, RO

JWNC HERE

MOV A, #FFH

How is the program executed? After how many loops does the program quit
the loop HERE?

Solution |

e We first move 20H to A

e Then 20H is moved to RO
HERE — s 20H+20H=40H;CY =0

So JNC is true (since C = 0). Therefore problems loops to HERE. Now it
proceeds as follows

(i) 40H + 20H = ﬁﬂH; CY = 0so0 loop
(ii) 60H + 20H = 80H; CY = 0 so loop
(iii) 80H + 20H = AOH; CY = 0 so loop
(iﬁ) AOH + 20H = COH; CY = 0 so loop
(v) COH + 20H = EOH; CY = 0 so loop
(vi) EOH + 20H = 00H; CY = 1 quit loop

So after looping 6 times, the carry flag is set. Therefore the condition “JNC” is
false and the program quits the loop. Then the next instruction MOV A #FFH
is executed.

Example 6.2. Can the program of example 6.1 be executed in a different
way?

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

176 The 805! Microcontroller

Solution

MOV PO, H#OFFH ;Configure PO as input port

MOV A, PO ;Move contents to A

CINE A, #60H, NEXT ;If A#60H, jump :

SJMP EXIT
NEXT: JNC OVER

MOV Rl1, A

SJMP EXIT .
OVER: MOV RO, A :If A>60H, move to RO
EXIT: END

If A>60H, CY=10
If A <60H, move to R1

mE W WE W

Example 6.6. RAM locations 50H—59H contain 10 numbers, one of which
1s 35H. Load the address of the number 35H into R3. All marks are less than
or equal to 25.

Solution

MOV RO, #50H Load first addressz to RO
MOV R2, #O0AH Load count into R2 :
MOV A, #35H ;Load A = 35H, the number to be
' ;searched for
HERE: CJNE A, @R0, NEXT ;Compare RAM data with 35H
MOV R3, RO iIE they are egual copy address
;which is in RO to R3
SIMP EXIT ;
NEXT: INC RO H
DJNZ R2, HERE H

=
P
-
L

Example 6.7. Read the contents of P1 and check if it is equal to S0H. If it is,
send FFH to P2; otherwise P2 is cleared.

Solution
MOV P2, #00H ;Clear B2
MOV Pl1, #0FFH ;Make Pl an input port
MOV R2, #50H ;R2 = S0H
MOV A, P1 ;Read P1
XRL A, R2 ;EXOR A with 50H. If they are equal,
;A = O0H after EXOR
JNZ EXIT ;If A # 00H, EXIT
MOV P2, OFFH ;If A = QOH., then P2 = FFH
BXIT:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

180 The 8051 Microcontroller

5. The RET instruction at the end of the subroutine, pops the return address
to the PC.

When a hardware interrupt takes place, the “Interrupt Disable flip-flops™ are
set, to prevent another interrupt with same priority level from taking place, until
an interrupt return instruction has been executed in the interrupt subroutine.
The mnemonic is “RETI”. There is not much difference between RET and
RETI, except for the enabling of the interrupt logic. RET is used at the end
of subroutines called by the LCALL or ACALL instructions. RETT is used by
subroutines called by an interrupt. Use of RET] at the end of a software called
subroutine may enable the interrupt logic erroneously.

A simple program is given below to illustrate concept of subroutine.

Example 6.11. Write a program to toggle all the bits of port 1, with a time
delay between toggling.

Solution | et5 consider the numbers 55H and AAH

55H — 01010101

AAH — mmmlu} bits are toggled

The delay 1s written as a subroutine.

ORG 00 ;
MOV A, #55H ;
HERE : MOV Pl, A ;
ACALL DELAY ;
CPL A ;

SJMPF HERE

Delay subroutine

DELAY : MOV RS, #O0FFH ;
LOOP: DINZ RS, LOOP H
RET
END

Many examples are presented in the next few chapters where subroutines are
used.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

184 The 8051 Microcontroller

7.1 Introduction

Chapters 4 to 6 presented the Assembly language instructions of 8051. There
are many advantages of programming in assembly language. However, pro-

gramming with C has become popular because of the ease of programming as
compared to ALP. In-this chapter we will see the advantages & disadvantages

of using C. The data types and programming concepts of 8051C are presented
in detail with a number of examples.

7.1.1 Advantages of programming in ‘C’ for microcontrollers

1. Programming in assembly language is tedious and time consuming, while
‘C’ programming is less time consuming and easier to write.

2. “C’ code is portable to other microcontrollers; that is the same ‘C’ program
(with little or no modifications) using the corresponding C cross-compiler
can be loaded into a different microcontroller.

3. C programs are easier to modify and update

4. Code available in function libraries (such as sine, sqrt, etc) can be used
while writing the ‘C’ programs.

7.1.2 Disadvantages of Programming in ‘C’

1. Assembly language programs have fixed size for the hex files produced
whereas for the same ‘C’ programs, different ‘C’ compilers produce dif-
ferent hex code sizes. Henqewhenwewanttncalculateemcthme delay
for ‘C’ programs, it is difficult.

2. Microcontroliers have limited on-chip ROM and the code space (to store
program codes) is also limited (64K bytes in 8051). A misuse of data types
by the programmer in writing ‘C’ programs, for example using ‘int’ data
type instead of ‘unsigned char’ can lead to a large size hex file, (which
some times may not fit in the limited code space). The same prublem does
not arise in assembly language program.

3. The general purpose registers of the 8051, such as R0-R7, AandBa:e
- under the control of the C compiler and are not accessed by C statements.

7.2 Declaring variables

In C it is necessary to inform the compiler about all the variables which are
available before using them. This enables the compiler to know what type of

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

188 The 8051 Microcontroller

The *C’ program generally has a list of global variable declarations after the
#include <> line, followed by a list of subroutines used in the program. Then
we have the main() function with local variable declarations and the main body
of the program within the flower brackets,

Generally microcontrollers once powered up (reset) keep executing one
machine code (instruction) after the other starting from the location 00H in
ROM space (code space). Towards this end, most of the 8051 programs are
designed to be executing indefinitely. If the task is finite, for example finding
the largest element in an array, etc, then after the entire program is coded, the
last line in assembly language program is coded as

HERE: SJIMP HERE

This statement will make the 8051 to keep jumping to the same location
and not execute any further codes in the code space. Suppose this statement is
not coded, then the 8051 executes the next opcode (machine code) pointed by
program counter (which gets automatically incremented for every instruction).
The assembler would have coded only the required hex code, but after the finite
task is over, and as the above SIMP statement is not there and the ROM space
may contain unspecified codes, the 8051’s execution is indeterminate. This
situation has to be avoided.

In ‘C” program this 1s implemented by using the statement

while(1);

Since ‘1’ is true, the while(1) loop will never terminate and is same as
HERE:SIMP HERE in assembly language.

If the algorithm consisting of say, do task 1, task 2, task 3, etc and repeat
from task 1, then in assembly language program (ALP) we have a SIMP to
task 1. In ‘C’ program, the task 1, task 2, task 3, etc which have to be repeated
are enclosed in the while(1) loop. (NOTE: no semicolon after while(1), instead
open a flower bracket and write the repeated tasks to be performed.)

main()
{...declaration, initialization parts,
. . . non repeated tasks, etc
while(1) /fwrite tasks to be repeated in the while loop

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

192 The 8051 Microcontroller

while(1); /fwait here

RESULT: 30H, 31H, 41H & 42H (ASCII values of 0, 1, A & B respectively)
are displayed at port P1.

Example 7.4. Write a program to toggle the pin P2.4, 300 times.

Solution gince the count 300 is greater than 256(FFH), the variable used for
counter say ‘n’ is defined as unsigned int n; [instead of unsigned char]. Also
we may use a variable name for the pin P2.4. Since P2 is a special function
register (sfr), its bits are defined using the “sbit’ data type. The ‘C’ program
for example 7.4 is given below '

#include <reg51.h>
sbit OPIN=P2°4; //P2"4 implies D4 bit of port P2
vold main()
{unsigned int n;
for (n=0; n<300; nt++) //repeat for 300 times
{OPIN=0;
OPIN=1;
}
while(1); {fwait here

NOTE: The above example illustrates the access of I/O pins in 8051. It is an
example of bit addressable 1/0 programming.
The next program is an example of signed numbers.

Example 7.5. Writea 8051 C program to send values of —3,2, —1,4, —2 to
port P1.

Solution As shown in Example 7.3, concatenate all the required values
into an array and use for loop to send to port P1. The “C” program is shown
below

sfr P1=0x81; f/define P1 since #include <reg51.h>
| //is not used

void main()

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

196 The 8051 Microcontroller

Solution | ¢t the initial value

on PO & P1 be 043H and 55H respectively.

The toggled values are BCH and AAH respectively (refer example 7.2).

Algorithm:

1. Send initial values on ports PO and P1

2. Generate a time delay of 1ms

3. Send the toggled values to the ports
4. Generate the time delay of Ims

5. Repeat from step 1.

C Program

#include <reg51.h>
void main()
{unsigned int i;
while(1)
{P0=0x43;
P1=0x35;
for (i=0; i<1275; i++);
PO=0xBC,;
Pl1=0x AA;
for (1=0; 1<1275; i++);

//1 1s a count >255, hence integer is used
//repeat continuously
{/send nitial values to the port

/ldelay of 1ms
/itoggled values

//delay of Ims
/fend of while

/fend of main.

Example 7.8. Write a program
50% duty cycle on pin P1.4.

to generate a square wave of 250ms on-time,

Solution Making a pin low and high continuously generates a square wave
50% duty cycle implies the on-time = off time = 250ms. The square wave

generated is shown in Fig. 7.1.

High

Low ——

'On time

Off time

Figure 7.1. Square wave with 50% duty cycle.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

204 The 8051 Microcontroller

} /fend of main
void delay (unsigned int count)
{unsigned int 1,j;
for (i=0;i<count;i++)
for (j=0;)<1275;)++); //1ms delay from inner loop

Example 7.16. Write an 8051 ‘C’ program to send the message “THE
EARTH IS BEAUTIFUL” to an LCD connected to the 8051. The data pins of
the LCD are connected to P1 and the data at these pins is latched into the LCD
when its enable pin (connected at P2.0) goes from high to low (i.e., a negative
edge at P2.0).

Soluﬁﬁn ,

(1) Declare an array or string to hold the message. Say use unsigned char
message[] = “THE EARTH IS BEAUTIFUL”.

NOTE: Now the element message [0] contains 54H, the ASCII value of
“T’. Similarly message [1] contains 48H, the ASCII value of “H”, The last
element in the array message [22] contains 4CH (“L"). The ASCII value
of spaces (20H) are also contained in the message [] array.

2. The characters (ASCII values) in message [] array are sent one after other
to P1 port. |

3. Each time a character is sent to P1, the enable pin P2.0 is made high and
low.

4. Steps 2 and 3 are repeated till the end of the array. (Here 22 characters are

‘sent.)

C Program for example 7.16

#include <reg51.h>

void main()

{unsigned char message[] = “THE EARTH IS BEAUTIFUL”;
unsigned char i; {/fonly 22 characters to send
for(i=0;i<22;1++) //mote: 22 (not 0x22) is used

{P1 = message [i]; //send character to port P1
P2°0=1; //make enable pin high to low to

/latch data

P2°0=0;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

208 The 8051 Microcontroller

Table 7.3 Bit logic operators.
Bit-wise
Symbol | operator | Example | Function Uses
& AND A&B Performs bit wise AND function | To mask certain bits
| OR A|B Performs bit wise OR function To set certain bits high
b EXOR | A"B Performs bit wise EXOR function| To clear a value, to toggle
~ Inverter | Y=-B Performs bit wise NOT function | To toggle the pin status

Apart from the bit wise logic operators, there are two bit wise shift operators
in C which are (1) shift right (>>) and (11) shift left ().

Their format is A >> B; where A is the data (which has to be shifted) and B is
the number of bits to be shifted right.

Similarly the format for left shift 1s A < B where A 1is the data and B 1s the
number of bits to be shifted left.

NOTE: SHIFT right by 1-bit is equal to division by 2 & left SHIFT by 1-bit
is equal to multiplication by 2.

Example 7.21. Explain the result of the following ‘C’ statements.
(a) PO =0 x 35 & 0 x OF;

Solution:
It is a bit wise AND: 0 x 35 i 0011 0101 B l AND operation
0x0F = 0000 1111 B
The contents of POare 0x 05 0000 0101 B
PO=0x05

(b) P1 =0 x 040 x 68;

Solution:

0x04 = 0000 0100
0x68 = 0110 1000

It is a bit wise OR.:] OR:opperitiii

and |P1=0x6C| or [P1=6CH| 0x6C 0110 1100
(c) P2=0x54"0 x 78;
‘Solution:
It is a bit wise EXOR: 0x54 = 0101 0100) .. .
0x78 = 0111 mnu]B‘t'“"s‘*EmR
and P2 =2CH 0x2C 0010 1100

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

212

The 8051 Microcontroller

temp2=temp2 & 0xD7; //mask D3 & Ds bits of temp2
while(1);

Run the above program in Keil simulator and observe the values of P, temp1
& temp?2 in the watch window.

Example 7.25. Write an 8051 C program to read the P1.0 & P1.1 bits and
send the ASCII characters of ‘0°, “1°, *2” and ‘3’ to PO for the combinations
00, 01, 10 and 11 of P1.1 & P1.0 bits.

Solution gjnce only Dy & D) bits of P1 are needed, mask the other bits D;
to D7. Hence the mask value is 0000 0011 = 03H.

Algorithm:

Make P1 as input port (send FFH to P1)

Read P1 value

Mask all bits except Dy & D; of P1 and put the masked value in x

If x = 0; send ‘0" to PO, else if x = 1; send ‘1’ to PO; elseif x = 2; send
‘2’ to PO; else send ‘3’ to PO

5. Repeat from Step 2.

oo O

C program

#include <reg51.h>

void main()
{unsigned char 1;

P1=0xFF; //make P1 as input port

while(1) /lrepeat forever : '
" {i=P1 & 0x3; /fmask all port pins except P1.1 &P1.0

- if(i==0) PO="0"; //0 in single quotes sends ASCII value to PO
elseif (i=1) PO="1";
elseif (i=2) P0="2";
else PO="3",
} //end of while
} /fend of main.

NOTE: This program can also be written with a switch & case statements.
As seen from examples 7.23, 24 & 25, all the logic bit operators have special
uses (such as masking, toggling, etc). Similarly the shift operators shift left
and shift right are extensively used in data serialization (that is transferring a

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

216 The 8051 Microcontroller

SW=1; //make P2.0 as an input pin
ACC=0x44, /fload accumulator with data to be shifted
/h.e., 44H
if{ SW=0) //LSB first
{for(x=0;x<8;x++)
{P170=ACC"0; //LSB of accumulator on port pin for
. //serial transfer
ACC=ACC>»1; //shift right by 1-bit position
} /lend of for
} /lend of if
else //this point is reached when SW=1
{for(x=0;x<8;x++)
{P1"0=ACC"7;, //MSB bit sent first
ACC=ACC<«1; //shift left once for next bit
} {/fend of for
} /fend of else
while(1); /fwait here
} //fend of main.

Example 7.29. Write a ‘C’ program to bring in a byte of data serially one blt
at a time via P1.0. The LSB should come in first.

Solution The serial data being received has LSB first, so feed it at Dy
of accumulator. So when the next bit is received, shift the LSB received in
accumulator by one right shift & enter the new bit again at D7 position of
accumulator. Repeat this for all 8 data bits received. This is illustrated below.

No. of n'glﬂ Received
shifiyof o f data’ e by T S e
awunmlatur hitunPll) “Accumulator contents (ACC.7 = P1.0 after shifting)
0 Do 1Dy x x x x x x x— Initially Dycan
(LSB first) be filled in at D,
1 D, D; Dp X x X X X X)NOTE: Shift contents
. D, D, D Dp x x X X x| ofaccumulator first
3 D, D; D, D D x x x x jandthen load the
4 D, D, Ds D, D Dy x X X received data bit at
5 Dy D;: Dy Dy D, D Dy X X! D erACC
6 Dg Dg Ds D, D; Do D, D x
7 D, D; D¢ Ds Dy D3 D, Dy Dy

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

220, The 8051 Microcontroller

void main()
{ACC=ASCII, //get data into accumulator
ACC=ACC & 0x0F; /imask with 0FH
PO=ACC; //display unpacked BCD
while(1);
}
ALP
START: MOV A, 32H ;ASCII data in 32H location is
smoved to A
ANL A, OFH ;mask upper nibble
MOV PO, A ;display unpacked BCD at PO
HERE: SJMP HERE

Example 7.33. Write an 8051 ‘C’ and assembly language program (ALP) to
convert packed BCD number to ASCII and display the bytes on P1 and P2.

Solution The packed BCD 29 is converted to unpacked BCD digits 02 and
09 and each unpacked BCD number is converted to ASCII by adding 30H.

Algorithm:
1. Obtain the unit digit of packed BCD number by masking with 0FH

2. OR with 30H to get the ASCII value and display on P1

3. Obtain the tens digit of packed BCD number by masking with FOH and
shift the masked value by 4-bit positions to right (to bring it to units place
& hence the unpacked BCD form, 02 for the above example) |

4. OR the shifted value with 30H to get ASCII representation of the tens digit
and display at P2. '

Result: P2 = 32H & P1 = 39H, (which are ASCII values of 2 & 9).

C Program

#include <reg51.h>
void main()
{unsigned char x;

-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

224 The 8051 Microcontroller

MOV
MOV
HERE: SJMP

Pl, A
A, R4
PO, A
HERE

;jget units digit

Example 7.36. Write a 8051 C program and ALP to convert a hexadecimal
number FDH to ASCII numbers after converting it to BCD.

Solution The conversion of hexadecimal number to decimal is the same as
above after the conversion to decimal is over, to convert to ASCII just OR it

with 30H.
C Program
#include <regS1.h>
void main()
{unsigned char templ, units, tens, hundreds;
unsigned char hexnum=0xFD;
temp1=hexnum/10;
units=hexnum %10; ffremainder
hundreds=temp1/10; //quotient
tens=temp1 %10; /fremainder
PO=units|0x 30; /{ASCII value of units
Pl1=tens|0x30; //ASCII value of tens
P2=hundreds|0x 30; //ASCII value of hundreds
while(1); -
} //fend of main
ALP:
START: MOV B, #10
MOV RO, #FDH
MOV A, RO
DIV AB
MOV R4, B ;remainder is units
MOV B, #10
DIV AB
ORL A, #30H ;ASCITI of hundreds
MOV P2, A
MOV A, B
ORL A, #30H., ;ASCII of tens
MOV Pl, A

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

228 The 8031 Microcontroller

chapter also presented programs for code conversions. The memory allocation
in 8051 C is compared with that of ALP.

7.11 Questions

1. Indicate the data type you would use for

“(a) temperature
(b) age of person
(c) count vehicles crossing a junction
(d) name of a person
(e) memory address
(f) a message to thank people
2. Give the hex value sent to the port in each of the following C statements.

(a) P2 =14
(b)) P2=0x 14
(c) P2 = ‘A’
(d) P2 =T
(€) P2 = 45

(f) P2 =0 x OF; P2 = *X".

What are the advantages and disadvantages of programming in C?
. What are the factors which affect the delay program?
Differentiate between the sbit and bit data type.

Writea C prugl'am to toggle P2.2 every 100ms.

Write a C program to count up PO from 0-99 continuously.
Explain the usage of

® N o AW

while(1)

statement in a C program.
9. Write a time delay function for 50ms.
10. Indicate the port output in €ach case.

(a) PO x FO & 0 x 25;

(b) PO =0 25 & 0 x 69;

(c) P1 =0 x F1°0 x 80;

(d) P2 =0 x 8070 x EA;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

242 The 8051 Microcontroller

while (1)

{TLO=0x1B;
THO=0x1A;
outpin=1;
delay ();
TLO=0x04;
THO=0x54;
outpin=0;
delay();

s %
}

void delay (void)
{TRO=1;
"~ while (TF0==1);
TRO=0;
TF0=0;

//initial value for 4ms in mode 0
//make port pin High
/finitial value for 3ms in mode 0
/{make port pin Low

//end of while loop
/fend of main .

//start timer

[iwait till TF is set
[//stop timer
/lclear TF

The initial values are loaded in the main program’ in the above program. An
alternate method is to load the initial values in the delay subroutine. In this case
two subroutines have to be written for the two different delays say-ondelay and
offdelay as shown below in the C.program. For each delay (on/off) different
timers can be used. In the below program ondelay is generated by timer 0 in
mode () & offdelay by timer 1 in mode 0. By this method flexibility is obtained

in the use of timers and also the modes used.

Alternate C program

=

#include <reg51.h>

void delayon (void),

void delayoff (void);

sbit outpin=P3°4;

void main()

{TMOD=0x00; ,
- while (1)

{outpin=1;
delayon ()
outpin = 0;
delayoff ();
}

5]
void delayon (void)

/{Timer 0 & Timer 1 in mode 0
//make port pin High
//make port pin low

/fend of while
ffend of main,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Timers/Counters and Serial Port in 8051 247

the initial value). Hence timer in mode 2 has autoreload facility. This mode
has many applications, the common hcmg the setting of the baud rate in serial
communication,

Example8.7. Write a program to generate a square wave of frequency 10KHz
on pin 1.4. Use timer 0 in mode 2 with a crystal frequency of 22MHz.

Selution Mode 2 of timer is a 8-bit timer with a maximum value of FFH.
To generate a square wave of 10 KHz, the time delay in Ton & Topr of the
square wave is the same (50% duty cycle) and is equal to -15- where T = jlg ==

oz = 0.1ms. Hence Tony = 212 = 0.05ms.
Hence required delay = 0.05ms

(Imitial value - 1) = (maximum value of mode 2)
Crystal frequency
12

22 x 10°
12

— Required delay x

= (FF) — 0.05 x 1072 x

=255-91.6
= 163
= A3H
Initial value = A4H; THO = A4 (Timer 0 is used)

Algorithm

| Initialize TMOD for timer 0 in mode 2

2 Load the initial value in THO

3 Start the timer (TR0 = 1)

4 Wait until timer overflows (TF0 = 1)

5 Stop timer (TRC = 0)

6 Clear timer flag (TF0 = ()

7 Toggle port pin (for square wave)

8 Repeat from step 3 (no need to reload the initial value)

NOTE: Step 5 is optional. If step 5 is deleted, repeat from step 4 (no need to
start again).

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Timers/Counters and Serial Port in 8051 251

In many applications when the number of counts the timer in mode 2 has
to count is known, say N, then instead of entering the initial value in TH as
(FFH — N +1), we can enter —N directly in the assembly language program.

Example 8.9. Calculate the value (in Hex) loaded mtu TH register for each
of the following cases

(i) MOV THI, #-48
(ii) MOV THI, #-48H
(iii) MOV THO, #-12

(iv) MOV THO, #12H.

Solution

(i) TH1 = DOH
(ii) TH1 = B8H
(iii) THO = F4H
(iv) THO = 12.

8.4_ Counter applicatiﬁn

In all the above programs we have used the timers in timer mode; C/T = 0
- in TMOD register. In the timer mode, the timers count the clock pulses from
8051’s crystal oscillator, where the clock pulse frequency is crystal frequency
) 12 :
In the counter mode of operation; C/T-= 1 in TMOD register and the timers
count the clock pulses from an external source (outside 8051).

Timer 0 in counter mode will count the clock pulses given at P3.4 (port 3)
and timer 1 will count the clock pulses gwen at P3.5. The Fig. 8.3 illustrates
the use of timer 0 as a counter

" Pulsesat _ILIN_

P3.4 THO | TLO = TFO
. Overflow

TRO flag
start/stop timer

Figure 8.3. Timer 0 acting as a counter.

NOTE: The mode 0,1,2 operation in timer mode & counter mode of operation
remain the same.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Timers/Counters and Serial Port in 8051 257

Example 8.12. Assume that a 1 Hz external clock is being fed into pin T1
(P3.5). Implement a 8-bit upcounter on port P1 to count from an initial value
to FFh. |

Solution Jge counter 1 (because of T1) in mode 2 (for auto reload from
initial value).

Assembly language program

MOV TMOD #60H ;jcounter 1, mode 2

SETB TO ;make port pin input

MOV THO, #20H ;initial value = 20H
; (can be any value)

] SETE TRO ;start timer
AGAIN: MOV A, TLO ;get count in A
MOV Fl, A ;and display in Pl

SJMP AGAIN

C Language program (Counter 1)

#include <reg51.h>
void main()
{Ti=1;
TMOD=0x60;
TH1=0x20; //initial value
TRI1=1; //start timer
while(1)
{P1=TLI1; {/display count
b
}

C program (considering TF1)

#include <reg51.h>

void main()

{T1=1; TMOD=0x60;
TH1=0x20;
while(1)

{do
{TRI=1;

-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

270 The 8051 Microcontroller

SETE TR1l
RPT: MOV A, P1 ;read from Pl port
MOV SBUF, A ;send to SBUF
WAIT: JNB T1, WAIT ;wait till transmission is complete
CLR TI
SJMP RPT :clear TI for next transmission

C program

#include <reg51.h>
void main()
{unsigned char x;
P1=0xFF;
TMOD=0x20; TH1=0xFA;
SCON=0x50; TR1=1;
while(1)
{x=P1; //read P1 port
SBUF=x; //place in SBUF |
while (TI==0), //wait till serial transmission 1s over
TI=0; f/clear for next transmission
}

In the next few programs the serial transmission program is converted into a
subroutine which can be used in any main program.

Example 8.18. Consider that a switch SW is connected to pin P2.3. Mon-
itor the SW status and if SW = 0: send ‘Hello’ and if SW = 1: send
‘world’ serially. Assume XTAL = 11.0592 MHz, baud rate of 9600, 8 bitdata,
1 stop bit.

Algorithm:

Initialize for serial transmission (TMOD, SCON, TH1, TR1).
Make P2.3 as input bit.

Read P2.3 data pin.

If P2.3 pin is high, send ‘world’ & if low, send ‘hello’.
Repeat from step 3.

-l il 5

NOTE: In the assembly language program, while storing the strings “Hello”
at locations label PLOW and “world” at PHIGH, the last character after the

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

280 The 8051 Microcontroller

Solution {jge Timer 1, mode 2 for senial transmission. Now the rematning

timer 0, mode 2 can be used to generate the square wave on pin P1.3.

To transmit the information of square wave, check the status of the pin P1.3.
‘When this pin P1.3 is High, transmit FF serially, so that at the receiver it is
decoded as 1. Similarly when the pin P1.3 is low, transmit 00 serially. Hence

at the receiver side a square wave can be regenerated.

Algorithm:
1. Initialize Timer 1 & 0 in mode 2
2. Load initial value in TH1 for the required baud rate
3. Load initial value in THO for square wave frequency (let THO = 00)
4. Start Timer 1
5. Clear P1.3 and make accumulator = G0H
6. Start Timer 0 and wait for it to overflow.
7. Stop Timer 0, clear TFO
8. Cnmpl:ment the pin and accumulator value (00—FF—00 ...)
9. Output accumulator value senally
10. Repeat from step 6.
Assembly Language program
ORG 00
MOV T™MOD, #22H ;Timer 0, 1 in mode 2
MOV SCON, #50H ;
MOV TH1, #-3 ;9600 baud
MOV THO, #00H ;square wave freg (minimum)
; (delay ia maximum)
SETE TR1 ;start timerl for serial port
MOV A, -#00 ;Initialize accumulator
CLR Pl1.3 ;and pin level
AGATN: SETB TRO ;start timer for sgquare wave
WAIT: JNB = TFO, WAIT _
CLR TRO :atop timer 0O
CLE TFO
CPL P1.3 ;toggle pin
CEL 'y jcomplement accumulator
MOV SBUF, A ;transmit data
HERE: JNB TI, HERE ;wait till transmission completes
CLR TI
SIJMP AGAIN

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

288 The 8051 Microcontroller

- monitor TL W]lﬂe sending message“BEAUTIFUL”, write into SBUF1 and
monitor TF1.

Assembly language program

SBUF1 EQU O0ClH;
SCON1 EQU 0COH
TF1 BIT O0ClH

i

ORG OOH
MOV TMOD, #20H
. MOV TH1, #-3 ;9600 baud

MOV SCON, #50H ;SCON for both serial ports
MOV SCON1, #50H
SETE P2.2 ;eonfigure for input pin (SW)
SETE TRl ;start timer
Again: JB P2.2, high ;g0 to dieplay ‘beautiful’ if P2.2=1
MOV DPTR, #DISPl ;S8W=0, hence display fine at serial
;port #0
next: CLR A
. MOVC A, @A+DPTR ;get value from ROM

JZ Again :if character is zero, break
;the loop (end of string)
MOV SEUF, A :send to serial port #0 for
4 rtransmission :
wait: JNB TI, wait ;walt if TI=0, i.e., until end of
' :transmission .
CLR TI ;reget flag for next character

INC DETER ;increment DPTR for next consecutive
' ;address in string
SJMP next
high: MOV DFTR, #DISP2
next2: CLR A 2
MOVC A, @A+DPTR ;get character from string 2

JZ Again _ ;end of string 2, break
MOV SBUF1, A ;transmit using serial port #1
waitl: JNB TI1l, waitl ;walt till transmission is complete
CLR TI1
INC DPTR
SJMP next2
DISP1: DB - '‘FINE‘’, O
DISP2: DB **BEAUTIFUL ', O
END

The corresponding C program is given below

#include <reg51.h>
sbit SW=P2"2; //declare the port pin as a variable SW
sfr SBUF1=0xCl; " //define the registers of serial port #1

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interrupts

Interrupts, abort the sequential execution of instructions. Interrupts are gen-
erated by the external environment. The 8051, has five interrupts (excluding
reset). These interrupts can be enabled or disabled. Their priorities can also
be set. Two SFR’s namely, Interrupt Enable and Interrupt priority are used to
control the interrupts.

Learning objectives

& Enable and disable interrupts.

& Set the priority of interrupts.

& Explain interrupt vector table. -

& Program timers using interrupts.

& Program interrupt-based serial communication.
& Service more than one interrupt.

293

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

298

The 8051 Microcontroller

NOTE: Once 8051 jumps (branches) to the ISR address (in the interrupt vector
table), the interrupt flag TFO (or TF1) is automatically cleared by the on-chip
hardware. The user neednot write a separate CLR TFO0 instruction.

In Example 9.2, the ISR is very small (less than 8 bytes), and hence it can
be written in the interrupt vector table itself (note, the interrupt vector table
is from O0OH to 002FH and each interrupt is allotted 8 bytes). In example 9.3,
the ISR occupies more than 8 bytes, hence a jump to a location in the program
space away from the interrupt vector table is provided at the ISR address in
the interrupt vector table.

Example 9.2. Write a program to 'generate a square wave of 10 kHz with
timer 0 in mode 2 at port pin 1.3 using interrupt mode. Also display a value
of ‘A’ at port 2 and ‘B’ at port 0. XTAL = 22MHz.

Solution The black schematic of the above problem statement is shown in
Fig. 9.1.

10kHz

Timer 0
Mode 2

———— P1.3

8051
22MHz + L pEeA
PO —>"B'

Figure 9.1. Example 9.2—Schematic.

The main program will initialize timer and keeps on displaying ‘A’ & ‘B’ at
the ports. In the interrupt service routine (ISR), the port pin 1.3 is toggled to
generate the square wave, The ISR is branched to 000BH (address of timer 0
interrupt) when TFO is set (i.e., timer 0 overflows from FFH to 00H or 1initial
value). Since mode 2 15 used, no need to load the initial value as this mode has
autoreload facility. Also no need to reset TF0 flag, as the on-chip hardware
circuitry will reset TF0 when 8051 branches to the interrupt vector table.

Algorithm
Main program

1 Imitialize TMOD for timer 0, mode 2

2 Load initial count in THO for 10 kHz

3 Enable interrupts (EA = 1) and timer 0 interrupt (ETO = 1) in IE register
4 Start timer 0

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

304 The 8051 Microcontroller

The corresponding C program is given below.

#include <reg51.h> |
void timerl(void) interrupt 3 //refer table 9.2
{
TR1=0; //stop timer 1
if (P274=0)
{TH1=0xFC, /fon-time initial value to get 1ms
TLI=0x67,
P2°4=1,; //make pin high
TRI1=1; /lstart timer
Jelse '
{TH1=0xF8§; //Off-time initial value
TL1=0xCE:;
P2°4=0); /fmake pin low
TRI=1;
}
} /fend of subroutine
void main ()
{unsigned char val;
TMOD=0x10; /ftimer 1, mode 1
[E=0x88; //fenable timer 1 interrupt, can written as
I/EA=1; ET1=1;
TH1=0xFC,; //on-time initial value
TL1=0x67,;
P2°4=1; ffmake pin high
TRI=1; //start timer
while (1) //repeat continuously
{val=P0; //read value from port PO
Pl=val; //and display at P1
} /fend of while
} //end of main

The below program is an example of enabling two timer interrupts simultane-
ously in the same program.

Example 9.4. Write a program to generate two square waves of 5 kHz and

25 kHz at pins P1.3 and P2.3 respectwely, with crystal frequency of 22 MHz
and in interrupt mode.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

310 The 8051 Microcontroller

9.3 External interrupts

In the following sections the features of external hardware interrupts are elab-
orated. There are two external hardware interrupts in 8051. They are INTO
and INT1, located on pins P3.2 and P3.3, with interrupt vectors (addresses) at
0003H and 0013H respectively. They are enabled/disabled using the EX0 and
EX1 bits in the IE register. '

Each external hardware interrupt can be programmed for two types of acti-
vation (1) Level triggered and (2) Edge triggered; selected by the reset/set of
ITO and IT1 bits in TCON register.

9.3.1 Level Triggered interrupt mode

The interrupting device should place a “low level’ on the external interrupt pin
(INTO/INT1) for at least 4 machine cycles to be recognized as an interrupt
request by 8051. In this mode the external interrupt pin is made high if no
ISR is needed to be executed. The features and working of the level triggered
interrupt mode is explained below.

1 Level triggered interrupt mode is selected when the corresponding ITO/IT1
bit in the TCON register is low. (Generally on reset TCON register is cleared
and hence this is the default mode)

Z to trigger an interrupt (i.e., for the interrupt to be recognized by the 8051),
the low level should be held for at least 4 machine cycles.

3 Once the interrupt is recognized, the microcontroller finishes the current
execution, saves the next address on the stack (PC pushed on to stack),
and jumps to the interrupt vector table {0003H/0013H address in ROM) to

service the interrupt.
4 The microcontroller executes the ISR till the RETI instruction

5 The low-level signal at the interrupt pin INTO/INT1 should be removed
before the execution of RETI instruction. If it is still low during the RETI
instruction, then the 8051 recognizes it as a new interrupt and will branch
again to the ISR.

6 The interrupt flags IE0Q and IE1 (similar to TFO/TF1 for timers) are not used
in the low-level triggered interrupt mode.

Disadvantages of level-triggered interrupt mode

1 The minimum duration of the low-level on the external pin (INT0/INT1) is
4 machine cycles. If it is less than this, the interrupt maynot be recognized
by 8051.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interrupts 315

CPL Pl1.3 ;toggle pin
RETI
ORG 0030H
START: SETB IEOD
SETB TCON.Q
MOV IE, #81H ;enable INTO interrupt
HERE: SJMP HERE
END
C language Program
#include <reg51.h>
void interruptO(void) interrupt 0 //ISR for INTO
{P1"3=~P173;
}
- void main ()

{IEO=1; /INTOQ — edge triggered mode
[E=0x81; //fenable INTO interrupt
while (1); /fwait indefinitely

}

Example 9.7. (b) Write a 8051 C program to count a 1 Hz pulse connected
to INT1 pin and display it on PO.

Solution INT] interrupt should be configured as edge triggered interrupt to
count the number of pulses (either +ve edge or —ve edge 1s sufficient).

Algorithm
1 Enable edge triggered interrupt mode by enabling IE1 = 1 in TCON

2 Enable external interrupt INT1 by making EX1 = 1 & EA = 1 in IE register

3 Display the count in a globally defined variable ‘counter’ on PO & jump to
step 3.

ISR at 0013H

I Increment “counter”
2 Return from interrupt

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

320 The 8051 Microcontroller

Serial port ISR at 0023H
1 Jump to SERIAL subroutine

SERIAL subroutine (written after main program or use ORG 00AOH, etc.)

1 If T1 is not set, go to step 3 for receiving data serially

2 IfTlisset, (a) clear T1, (b) move data from next location in RAM (from 45H)
into SBUF for transmission, (¢) Decrement counter (d) Return from ISR

3 If R is set, just read SBUF value and clear RI and return from ISR

(NDTE: The value read from SBUF is just discarded, as in this program we
are not doing anything with the reception of serial data, but by chance any

serial data is received, SBUF 1s read & RI is cleared).
For ‘C’ program, the above example is modified as-transmit 10 bytes of dm:a

stored in the string mydata. The storing of data from mydata in RAM location
is done using the instruction:

Unsigned char mydata[J=0x 30, 40H, ‘A’, “SPEED”:

In the above initialization of mydata, the serial data transmitted 1s 30H, 40H,
41H, (ASCII value of A), 53H, 50H, 45H,45H, 44H.

ASCII values of “SPEED”

To store the same string in ROM location, the codeword ‘code’ is used

code l.lﬂﬂlg:m:d char m}'dﬂtﬂ.n=3ﬂH, 4ﬂH, o A“, “SPEED";

Assembly language Program
ORG 00
SJMP START
ORG 023H

. LJMP SERIAL
ORG 0030H
START: MOV TMOD, #20H
MOV TH1, #-3
MOV SCON, #50H
MOV IE, #90H

SETE TR1

MOV RO, #10 ;ecounter for 10 data bytes

MOV R1l, #45H ;starting address of data in RAM
MoV A, BR1 ;move data from RAM to A

MoV SEUF, A ;serially transmit data

; lone serial data is transmitted in
;main program for TI to be set;
;jrest in subroutine);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

326 - The 8051 Microconsroller

(6) Start timer 0 and timer 1 |
(7) Transmit a letter “H” once serially (for TI interrupt to be set)
(8) Read from P1.7 and send to P1.3

(9) Repeat step 8 continuously.

Timer 0 ISR at 000BH

(1) Clear TFO

(2) Reload initial values into TI-ID TLO =F8CE H fﬁr square wave
(3) Complement bit P2.3 for square wave
(4) Return from interrupt.

Serial ISR at 0023H
SIMP to serial routine.

Serial routine

(1) If TI = 1, then clear TI, send ‘H’ to SBUF & RETI
(2) Else clear RI and return from subroutine

Assembly language Program
ORG o0 ;a reset vector
LJMP START
ORG 00OBH :Timer 0 vector gince ISR is small,
;code here itself
CLE TRO ;Stop timer O
CLR TFO iclear the interrupt flag-optional
. ;as RETI will clear it
CPL P2.3 ;complement bit for sguare wave
;generation
MOV THO, #FBH ;|Reload initial value (remember mode |
NOV TLO, #O0CEH ;]1 has no auto-reload capacity)
SETB TRO jstart timer again
RETI
ORG 0023H ;serial interrupt vector
LJMP SERIAL
ORG 0030H ;main program
MOV TMOD #21H ;Timer 1 in mode 2 and Timer 0
; ;in mode 1
MOV TH1, #—3H ;for baud rate of 9600
MOV THO, #0F8H ;initial wvalue for sgquare wave
MOV TH1, #0CEH
MOV SCON, #50H

:gerial mode 1; B-bit data

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interrupts 333

interrupt is an external or internal event that interrupts the microcontroller to
inform it that a device needs its service. Every interrupt has a program called
the interrupt service routine, stored in a predetermined RAM location. The six
interrupts are reset, two to indicate timer overflows, two external interrupts
and a serial communication interrupt.

The 8051 can be programmed to enable or disable an interrupt. It can also
be programmed to set the interrupt priority. This chapter has presented several
programs in both assembly language and C to illustrate the functioning of
interrupts.

9.7 Questions

R

10.

11.

12.

13.
14.
15.

. What is the advantage of using interrupts?

What is the meaning of vectored interrupt?

In 8051 clearly explain how different interrupts are enabled/disabled.
Why is the SIMP/LIMP instruction on address 07?

Clearly explain the sequence of events after an interrupt occurs?

Explain how two square waves of different frequencies can be generated
by the 8051. |

If Timer 1 is programmed for mode 1, THO = FFH; TL1 = F8H and IE
bit for T1 is enabled, explain how interrupt is activated.

Write a program in which every 2 seconds the LED connected to P2.1 is
turned on and off four times.

How many hardware interrupts are available in 8051? How are they
activated?

Explain the difference between level triggered and .edge triggered
interrupts.

How do we take care to see that a single interrupt is not activated multiple
times?

Write a program to get data from PO and send it to P1 while TO is used to
generate a 2KHz square wave on P2.2.

Explain the senal communication interrupt and how it is activated.
Explain the difference between RET and RETI.

Write an ALP and a C program to get data serially and send it to P1, while
TO (timer 0) turns an LED on and off every second at P(.2.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interfacing the 8051 337

Vee o
@ oa ao @ - IVEE
LED A LEDA on
@ o b bo @ b o—
LED B B ¢ o—
d o— FI G |B
————{:}—-w-oc co—@— et o
LED C C ' fo EI |C
B—d @] T
LEDD D
Eh—oe e oA (c) Common anode
E E 7-segment display
B—t
F | B
&—s g o—)
G G
B T R Y-
DP 5) S
{a) Common anode (b) Common cathode
connection connection
Figure 10.2.
I+VC¢
P27 a
8051 P26 b
P2.5 c A
P24 ¢ Fl g |B
s——e o o
P2.2 f BN
P2.1 g DP
P2.0 dp

Figure 10.3. 8051 connected to a 7-segment display.

¢, d, ¢ & ‘f and'a low on pins ‘8’ and ‘dp’ should be sent to the 8051 port
(here P2) where the 7-segment display is connected.

Example 10.1. Display nmnhfers" 0-9 continuously on a common anode 7-
segment display connected to 8051 at port P2. '

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

342 The 8051 Microcontroller

+5V
L]
P1.0 D, Vec
8051 : ;
P17 Dy 10K pot
(used to control
' light intensi
P2.1 R/'W gh v)
P22 E Vss
Figure 10.6. Interfacing of LCD to 8051.

Table 10.2 LCD pin functions.

Pins | Vs, Voo, Ver | Ground, +5V, & contrast control pins

CONTROL | RS RS =0 — select command register

PII'HS ' " | RS =1 - select data register
R/W R/W = 0 — write to LCD
R/W =1 - Read from LCD
E Enable — high-to-low pulse (450 ns wide) to latch data
Dy—D- into LCD
DATA DD, 8 data pins, Dy—D, used to send data/command byte to
PINS (bidirectional) | LCD orread from LCD

2. The ASCII value of the character to be displayed (say 41H to display ‘A’)
is sent on the Do—D7 data lines with RS = 1 (data register), R/W = 0 and
a high-to-low pulse on the ‘E’ pin. | .

- Command words used in LCD are many, due to the various features available
in LCD. The LCD display can display 16/20 characters per line and the number
of lines in the display can vary from 1, 2 or 4 lines depending on the model. In
the LCD, the data can be displayed at any location, say 3rd character position
in line 2, etc. The command word 80H sent to the LCD, positions the cursor
at position 0 on line 1. Similarly 86H, command word positions the cursor at
position 6 on line 1. On line 2, the cursor position command word starts from
COH and the 19th position (for 20 x 2 LCD i.e., 20 characters per line & 2
lines) on line 2 is D3H.

The data byte sent to the LCD after the command word COH is sent, is
displayed at position 0, line 2. Before the next data byte is written the cursor
should be shifted right automatically. For this during the initialization of the

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

346 The 8051 Microcontroller

;Delayl
DELAY1: MOV R3, #10 ;emall delay
LOOP3 : MOV R4, #255
LOOP4 : DINZ R4, LOOP4
DJNZ R3, LOOP3
RET
END

NOTE: DATAWRT and CMDWRT subroutines are almost same except for

RS, which is low (RS = 0) for command & high (RS = 1) for data.

Generally on a LCD when a string, such as ‘HELLO’ in the above example,

has to be displayed, the programming technique is to store the string (array)
in the ROM (say at location 200H after all the programs-main and subrou-
tines, have been entered). This string is accessed using *‘MOVC’ command as

shown below. The DATAWRT, CMDWRT, INITLCD, DELAY, etc subroutines
remain the same.

START:

NEXT:

DISPDATA:

ORG
SJMP
ORG
ACALL

CLE
MOVC

JZ

" ACALL

INC

SJMP
SJIMP

ORG

DB

OH

START

30H

INITLCD

DPTR, #DISPDATA

Fo
A, @R+DPTR

HERE
DATAWRT
DPTR

NEXT
HERE

200H

"HELLO", 0

;initialize LCD
;address of data string
;to be displayed

;get data pointed by DPTR
;into Accumulator

;1f character is zero,
;indicates

;end of string, so end
;display data on LCD
;point to next character
;in the string

;DATAWRT subroutine

; CMDWRT subroutine

; INITLCD subroutine

; DELAY subroutine

;ROM location from

;which string

;to be displayed is stored
;data and NULL

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interfacing the 8051 353

;INITLCD Subroutine
INITLCD: MOV A, #3BH :2 lines, 5x7
ACALL CMDWRT
MOV A, #0EH ;cursor ON
ACALL CMDWRT g
MOV A, #01 ;clear LCD display
ACALL CMDWRT '
MOV A, #06 ;8hift right
ACALL CMDWRT
MOV A, #B80H - ;1st line display
- ACALL CMDWRT '
RET
;sCMDWRT Subroutine
CMDWRT : ACALL READY ;wait till LCD is ready

MOV Pl, A ;gend command to Pl

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 FOR H--L pulse

ACALL DELAY1 ;small delay

CLR P2.2 ;E=0 '

RET

;READY Subroutine .
READY : SETB Pl.7 ;make P1.7, i.e., D7 as input pin

CLR P2.0 ;RS=0 for command register
; {(Busy flag is Dy of command
;register) ;

SETB P2.1 sR/W=1 for read operaticn
;read command register by giving
ia low-high pulse on ‘E’ pin

BACK : CLR P2.2 ;E=0 for L-H pulse

ACALL DELAY1 ;emall delay

SETB p2.2 ;E=1" (now the contents of command

' | . ;register are put on Dg--Dj)

JB P1.7, BACK ;if P1.7=D7 of command
;register=BUSY FLAG is 1, wait
;by reading command register

. ;again & again

RET
;DELAY1 subrottine

MOV R3, #10

DELAY1 :

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

358 The 8051 Microcontroller

ORG 030H jmain program
MAIN]: SETE TCON.OD ;make INTO as edge triggered
MOV IE, #B8l1H ;EA=1 & EX0=1; enable INTOD
~ ;interrupt
MoV TMCD, #20H ;Timer 1, mode 2
; (for serial clock)
MOV TH1, $#-3 ;9600 baud rate
; (refer timer/serial chapter)
MOV SCON, #50H ;enable serial transmission
SETE TR1 jstart timer 1
HERE SJMP HERE :wailt here
ORG 00B0H ;transmit subroutine
TRANSMIT: MOV SBUF, #30H ;ASCII code for '0°
WAIT: JNB TI, WAIT ;wait till TI=1 indicating
;jtransmission complete
CLR TI ;jclear TI flag for next
;transmission
RETI jreturn from interrupt
END

Example 10.6. Two switches are connected to pins P1.0 and P1.1 as shown
in Fig. 10.11. They are also vectored to interrupt location 003H, i.e., INTO.
Write a program to display 01 on port 2 when SW1 is pressed, 02 when SW2
is pressed and OFH when both are pressed.

A -y
| SW2 8
. P1.1 g)] —
_;I;[}—-PGJ! 1
(INTO) B

Figure 10.11. Schematic of Example 10.6.

Solution The port pins P1.0 & P1.1 are high when SW1 & SW2 are not
pressed (because of internal pull-up resistors). When SW1 is pressed P1.0
goes low and even the output of the AND gate at P3.2 goes low. Since P3.2 is
INTO, if EXO0 is enabled, then the ISR at 003H location is executed. Pressing
any one of the switches makes the output of the AND gate low & the INTO
ISR is executed.

Algorithm:
1. Enable P1.0 & P1.1 as input pins
2. Enable INTO interrupt (EA=1 and EX0=1 in IE register, i.e., IE=81H)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

- Interfacing the 8051 365

This example requires the ASCII value of key pressed to be displayed on
PO. If ASCII values are not required and only the key value is required then,
instead of MOV DPTR, #ROW0, we can have MOV R2, #0 for row 0, MOV
R2, #4 for row 1, MOV R2, #8 for row 2 & MOV R2, #C for row 3, and in
the column part instead of INC DPTR, we have INC R2 and in the found part
just found: MOV A, R2; MOV PO, A; LIMP AGAIN. -

10.5 Stepper motor interfacing to 8051

A stepper motor translates electrical pulses into mechanical movement. A con-
ventional motor (AC/DC motor) shaft runs freely, whereas the stepper motor
shaft moves in a fixed increment & hence the shaft position can be controlled
precisely, say move by 4° & stop. Stepper motors are used for position control
applications such as dot matrix printers, disk drives, robotics, etc.

There are two types of stepper motors (SM)}—permanent magnet SM & vari-
able reluctance SM, depending on the rotor type (whether permanent magnet
is used or not). The permanent magnet SM consists of a permanent magnet
rotor (also called the shaft) surrounded by a stator as shown in Fig. 10.13(a).
Generally the stator has 4 windings that are paired with a center-tapped com-
mon as shown in Fig. 10.14. The center tap allows a change of current direction
in each of the two coils, hence changing the direction of polarity in the stator
poles which return leads to a change in the direction of rotor rotation.

The rotation of the rotor in a SM along with the winding E:nf:rglzatlﬂn
sequence is shown in Table 10.5.

Depending on the number of teeth on the stator & rotor, the stepper motor
rotates a fired number of steps per revolution. The commonly available number
of steps for one revolution are 500, 200, 180, 144, 72, 48,.24. The step
angle, i.e., the movement of a single step of a stepper motor is calculated
as —— swps ';'l: ————_ Say for 200 steps per revolution. The step angle is

3’%}3 = 1.8° per step.

Similarly step angle for 72 steps per rﬂvulutmn is 2 —ﬁ— =5,

For the 4-step switching sequence shown above, after four steps the same
two windings will be ‘ON’, i.e., the sequence repeats after every 4 steps. After
completing 4 steps, the rotor moves only one tooth pitch. Hence if the rotor
has 50 teeth (each teeth 1s one pole), the number of steps for one complete
revolution is 4 steps x 50 rotor teeth = 200 steps/revolution. Hence for smaller
step angles (i.e., more steps/revolution), the rotor must have more teeth.

. To double the number of steps/revolution, say 400 instead of 200, we
follow the 8-step sequence shown in Table 10.6. Here, with this method, the

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interfacing the 8051 373

unsigned char i;
while(1) f/repeat continuously
{for (i=0; i<8; i++) /frepeat for 8 steps with values from table
{P1=table[i];

delay(1000);
;
} /lend of while
} /fend of main
void delay (unsigned int initial)
funsigned int i;

for (1=0; i<initial; i++);

}

Example 10.11. Write a program to monitor the status of a switch SW
connected to pin P2.7 and perform the following:

(a) If SW =0, the stepper motor rotates clock wise
(b) If SW = 1, the stepper motor rotates counter clock wise (ACW)

Use the wave-drive 4-step sequence.

Solution
Algorithm:

1.

Initialize the phase sequence as 88H for 4-step wave drive (NOTE: Apart
from 88H, either 44H, 22H or 11H can be used)

2. Check SW 1.e., P2.7 status, if high rotate the phase sequence left (ACW)
else rotate the phase sequence right for clockwise direction
3. Output the phase sequence on port P1, call delay
4. Repeat from step 2 continuously.
ALP
ORG 0H
START: BSETEB B2.7 ;make the pin as input pin
MOV A, #B8H ;initial phase value for 4-step
;wave drive
next: JNE F2.7, CW ;if switch = 0, go to clock wise
RL A :rotate left for anti-clockwise as
;P2.7 is high
MOV P1, A ;output on port Pl
ACALL delay
SJIMP next

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Interfacing the 8051 377

Now if Do-D7 = FFH, then Iy = 2mA(4 + 1 + -+« + L) = 1.99mA.

If DDy = 80H, then Loyt = 2mA (§ + § + § + -+ + 5%) = 2mA(-}) =
ImA,

IfD:r—Da EDchanImu—ZmA(§+3+ +ﬁ;+ﬂ+ -+ 10) =
Emﬂxﬁ—ﬂﬂm&

Using the I-V converter this I, is converted to V.

Themaxunumv,,m,fnng—D7=FFH15ca]culatedasvm Lou: x5kQ1.e.,
Vout = 1.99mA x 5K = Q%V(WhETESkﬁlBthERf in the I-V converter). For
D7-Dg = 80H, the I,;;; = 1mA & the corresponding Vot = ImA x 5K = 5V.
For D7-Dg = 00H, the I, = 0 & Vo = 0V.

Another method to calculate the output analog voltage is to find the
resolution of the DAC and multiply it by the digital word.

Vimax - 10V
Resolution of the DAC = ;“ = 123 = 39.06mV = 39mV

Hence for D7-Dg = 80H, the output analog voltage is

Vour = resolution of DAC x (D7-Do)scp
= 39111\? x 128 = 5V

DAC is commonly used in wave form generanun as shown in the,cxamplﬁ
below.

Example 10.12. Interface a DAC 0808 to 8051 at port P1 and write an 8051
program to generate a sawtooth waveform.

Solution Congider that the interfacing is as shown in Fig. 10.17. _
A sawtooth (ramp) wave form as shown in Fig. 10.18 has an amplitude
which is continnously increasing to a maximum value.

Figure 10.18. Sawtooth waveform.
NOTE: Vi 15 %wted'when D+-Dg = FFH.

R R T L e

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

384 The 8051 Microcontroller

Generally a sine wave starts at 0V with a positive half (0-180°) and a
negative half (180°-260°) with +Vm as positive peak and —Vm as negative
peak. The value of the sine wave at any point v(t) = Vmsin#.

Here the DAC interfacing to 8051 setup produces an output voltage V gyt In
the range 0 to 10V, no negative values. Hence the range 0 to 10V is divided
into 2 portions; 0—5V for negative half & 5V to 10V for positive half or simply
the sine wave voltage v(t) = 5 + 5sin#. The values for different sine angles
‘@’ are given in Table 10.9, along with the digital byte to produce them. The
digital bytes in the lookup table are calculated as voltage/resolution.

Table 10.9 Sine table.
Anged | |V |Ddcip
(indegree) | sin® | SV+5sin@ | Vgd39.06
0° 0 5 128
30° 0.5 7.5 192
60° 0.866 9.33 238
90° 1 10 255
120° 0.866 9.33 238
150° 0.5 o 192
180° 0 5 128
210° 0.5 2.5 64
240° —0.866 | 0.669 17
270° ~1 0 0
3ﬂﬂ"_ —0.866 | 0.669 17
330° 0.5 2.5 64
360° 0 5 128
ALP for sine wave generation
AGAIN: MOV DPTR, #TABLE
MOV R2, #12 ;eount value for 20 step b/w 0--360°
NEXT: CLR A
MOVC A, @A+DPTR ;get wvalue from look-up table &
;o/p to DAC
MOV FPl, A
INC DPTR ;get next wvalue
DJINZ R2, NEXT
SJMP AGAIN
ORG 300H
TABLE: DB 128, 192, 238, 255, 238, 192, 128, 64, 17, 0, 17, 64, 128
END

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

388 The 8051 Microcontroller

C Program
‘#inciude <reg51.h>
void main()
{P2"7=1; //make port pin as input pin
while(1) //repeat continuously
{if (P277==1)
P1=0x09; /fanticlock-wise direction
else
P1=0x06; /Iclock-wise direction
} /fend of while
} : //end of main

Apart from using a H-bridge, an IC such as L293 can be interfaced between
8051 and DC motor to control the direction of the DC motor as shown in
Fig. 10.22. The optoisolator ILQ740 opto provides additional protection of
the 8051 by isolating the 8051 from the DC motor circuit which is of higher

- power rating, The IC L293 has 3 input pins which are (1) enables pin-which
enables the IC L293 when high (2) INPUT1 = 1, turns the motor in clock-wise
direction (3) INPUT2 = 1 turns the motor in counter clock-wise by controlling
current direction at OUTPUT1 & OUTPUT2 pins.

T +12V
+5V +12V +12V
| T Veel Veez T
8 P1lLO—; O Enable
';" PlLI—>1, O,Input1 Output1
1 P1.2—1I; (07 Input2 OQOutput 2
GND
ILQ74 |
Optoisolator + il
L293 IC for DC motor with free
directional control of wheeling diodes
DC motor

'Figure 10.22. Bidirectional motor control using a L293 chip.

NOTE: Use a separate power supply (of higher rating) for the motor & 1293
and another separate power supply for the 8051.

Example 10.20.. Consider that a DC motor is interfaced to an 8051 through a
L293. Write an 8051 program to monitor the status of a switch SW connected

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 409

. PC with
BLOCK DIAGRAM KEIL pVision

M RS-232 £ ‘
: el SHIFTER
< P1[0..7] > 54!11‘1 Bytes < PO [0..7] >

Flash memory - N

256 Byte Ram
1792 byte XRAM

2048 bytes EEPROM
< P3 [0..7] > < P2[0..7] >

AT89C51ED2/RD2
pC

11.3 Creating and compiling a pVision2 project

Before assembling and simulating an 8051 program, the program has to be
written in a *.asm file for assembly language programs and *.C file for C
programs.The steps to be followed to simulate using the Keil Compiler are as
follows:

i‘ Double Click on the uVision3 icon on the desktop.

2. Close any previous projects that were opened using — Project — Close.

3. Start Project — New Project, and select the CPU from the device database
(Database-Atmel- AT89CS1ED2). (Select AT8ICS1ED2 or AT89CS51RD2
as per the board).On clicking ‘OK’, the following option is displayed.
Choose Yes.

Copy Standard 8051 Startup Code to Project Folder and Add File to Project ?

T

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 415

Ll: MOV dptr, #9000H //array stored from
[/address S000H
MOV A,ROD ffinitialize exchange counter
MOV R1,A '
L2: MOVX a, a@dptr //GET NUMBER FROM ARRAY
MOV B, A //& STORE IN B
INC dptr
MOVX a, @dptr //next number in the array
CLR C //reset borrow flag
MOV R2, A //STORE IN R2
SUBE A, B //2nd - 1st no.---noc compare
//instruction in 8051
JC NOEXCHG // JNC - FOR ASCENDING ORDER
MOw A.B //EXHANGE THE 2 NOES IN

//THE ARRRAY

MOVX @&dptr,a

DEC DPEL //DEC dptr-INSTRUCTION
//NOT PRESENT

MOV a,R2

MOVX @dptr,a

INC . DPTE
NOEXCHG: DJNZ R1,L2 //decrement compare counter
DJNZ RO,L1 //decrement pass counter
here: SIMP here
END

Algorithm

1. Store the elements of the array from the address 9000H
2. Initialize a pass counter with array size-1 count (for number of passes).

3. Load compare counter with pass counter contents & initialize DPTR to
point to the start address of the array (here 9000H).

4, Store the current and the next array elements pointed by DPTR in registers
B and r2 respectively.

5. Subtract the next element from the current element.

6. If the carry flag is set (for ascending order) then exchange the 2 numbers
in the array.

7. Decrement the compare counter and repeat through step 4 until the counter
becomes 0.

8. Decrement the pass counter and repeat through step 3 until the counter
becomes 0.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 421

The high part of the square result (SQH) is stored on the stack.
Multiply the low part of the square result (SQL) with x (partial cube result).
Store the low part of the above result at 9001H & the high part in R2.

Retrieve the high part of the square result (SQH) stored on the stack &
multiply with x.

Add the low part of the above result (SQH*X) with R2 and store in 9002H.
9. Add the high part (SQH*X) with the resulting carry and store in 9003.

e Sl R

_l:il:l.

Program 11.3: Program lllustrating Bit Manipulations

7) Two eight bit numbers NUM1 & NUM2 are stored in external memory
locations 8000H & 80001H respectively. Write an ALP to compare the
2 Nos.

Reflect your result as: if NUM1<NUM2, SET LSB of data RAM 2F
{bit address 78H)

IFNUMI>NUM2, SET MSB OF 2F(7FH). if NUM1 = NUM2-Clear both
LSB & MSB of bit addressable memory location 2Fh

ORG COQDH //reset wvector
SIMP 30H
ORG 30H
MOV DPTR, #8000H
MOVX A, @DPTR //get number from BOOOH
MOV RO,A [/RO=NUM1
INC DETR
MOWVX A, @DPTR [fB=NUM2
CLR e //clear ‘C' for SUBB
SUEE A, RO
JE EQUAL
JNC BIG
SETB 78H //set bit at 78BH bit address
SJIMEP ENDL
BIG: SETB 7FH
SJIME ENDL
EQUAL: CLR TTH
CLE TFH
END1 : SJIMP END1 [/walit here
END

Algorithm:

1. Store the elements of the array from the address 4000H
2. Move the first number in r0 and the second number in register A respectively

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 429

clear the TI flag and continue with transmission of the next byte by writing
into the SBUF register. (The program can also be written in interrupt mode).
The speed of the serial transmission is set by the baud rate which is done with
the help of timer 1. (Refer Chapter 8). Timer!l must be programmed in mode
2 (that is, 8-bit, auto reload).

Baud rate Calculation: Crystal freq/ (12*32) = (11.0592MHz)/(12*32) =
28800.

Serial communication circuitry divides the machine cycle frequency
(11.0592 MHz)/(12) by 32 before it is being used by the timer to set the
baud rate.

To get 9600, 28800/3 is obtained by loading timerl with -3 (i.e., FF -3 =FD)
for further clock division. For 2400 baud rate, 28800/12 == -12 =F4 in THI.

Algorithm:

1. Initialize timer 1 to operate in mode 2 by loading TMOD register.
2. load TH1 with -3 to obtain 9600 baud.

3. Imtialize the asynchronous serial communication transmission (SCON)
register.

4. Start timer] to generate the baud rate clock.

5. Transmit the characters “y” & “E"” by writing into the SBUF register and
waiting for the TI flag.

Program 11.7: Timer Delay Program

Program illustrating timer delay

13) Generate a | second delay continuously using the on chip timer in interrupt

mode.
ORG OH //Reset Vector
SIJMP 30H -
ORG- OBH //TFO wvector
SJMP ISR
ORG 30H //main program

MOV a, #00

MOV RO, #0

MOV R1l, #0

MOV TMOD, #02H //00000010-Run timer0 in mode 2

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

436 The 8051 Microcontroller

2. Get the lower nibble & call ASCII routine
3. Store the converted ASCII value |

4, Get the higher nibble & call ASCII routine
5. Store the converted ASCII value

ASCII subroutine

1. If digit greater than 09,(for A-F) add 07H & 30H
2. Else (i.e., for 0-9) add only 30H

3. return

18) Write an ALP to implement ASCII to hexadecimal conversion

ORG
SJMP
ORG
MoV
MOV
CLR
SUBB
MOV
JC
CLER
SUBB
SKIP: CLR
SUBB
INC
MOV
here: sjmp
END

0000H
30H

30H

R1, #50H

A, @R1

C

A, #41H
A, @R1
SKIP

c

A, #07H
C

A, #30H
Rl

@R1l, A
here

//get ascii byte from RAM location 50H
//compare with 41H

//get back number into A

[/if number <41, subtract only 30H

//subtract 07 & 30H if number >41

//8tore the hex code

Result:

The ASCII code 45 at D:0050H is converted to hexadecimal -0E at 51H

D ——————

Address: |D:050H

x|
4

Address: [D:050H

NOTE:

D:0x50: 45 OF 00 00 00 OC ilmﬂﬂﬂ: 32 02 00 00 0O
Ip:0x57: 00 00 0o 0o 00 ool |

D:0x57: 00 00 00 00 0O

For this program the input data should be only in the range 30H-39H & 41H

to 46H.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 445

}
void main()
{unsigned char freq = 500; //mid-delay in the range 100-1000
P3 =0 x FF; /feonfigure port 3 as input port
//for switches
while(1)
{if('MORE); ~ /fif MORE key is pressed
| /f{(decreased frequency)
{while(!MORE); /fwait till key is released
if (freq < 1000) /fif freq is less than maximum,
/fincrease it
freq = freq + 50;
} /fend of if
if (ILESS) /11f less key is pressed
/f(increase frequency)
{while(!LESS); /iwait till key 1s released
if (freq > 100) /Nf freq 1s more than minimum,
//then decrease it
freq = freq — 50;
} . /lend of if
PO = 0 x ff; /foutput high on port
delay(freq); //call delay
PO = 0 x 00; /foutput low on port
delay(freq); ffcall delay
4 /fend of while
} /fend of main

Program 11.11

External ADC and temperature control interface to 8051

Temperature control is a common application found every where, from the
refrigerator, AC, oven to nuclear reactor. We discuss here a simple on-off
temperature control, wherein the relay is turned on/off depending on whether
the current temperature is greater/lesser than the set-point. The block diagram
of the set-up is shown in Fig. 11.3.

In the above setup the temperature of water (or the temperature of the tip
of a soldering iron) is controlled. The water is heated in the electric kettle.
The power supply to the kettle is controlled by a relay. If the temperature is
greater than the desired (set point) the power supply is cut-off by the relay and
vice versa. The temperature is measured by a RTD, which is a transducer. The

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil Software (Lab Manual) 449

unsigned char i=0x80; //i has the initial speed value=half speed=80H
P3=0xff; /fconfigure P3 to accept switches
while(1)
Hif(linr) /fif increment is pressed
{while(!inr); /fwait till key is released
1f(i>10) //if speed is more than minimum
i=i-10; /fincrease the DC motor speed, by decreasing
//the count
4 /fend of if
- if(!der) /Mf decrement is pressed
{
while(!der); /iwait till key 1s released
i1f{(1<0x10) fldecrease the DC motor speed, by increasing
//the count
} {fend of if
PO=i; /foutput the value to port PO for speed control
¥} /fend of while and main

Program 11.13 Elevator interface to 8051

The elevator interface card explained in the following section simulates the
up/down movement of an elevator using LEDs, on giving a floor request by
pressing the corresponding floor key. The elevator interface to 8051 1s shown

in Fig. 11.5.
Latch 0o |-L2m
r«— P0.4 _ | 1
Key, @ \CR os| L8
—9o—Pr QP10 | L
- ﬂT =
[-—ﬂ——- P05 Loy
Key, 'I' CR — R! g POO o L5 T
Pt Q™S PLL o pou I i
5 decode L4
(P k.2 seoder 04 ;H
K:FJ_.EI CR _ R-z PI]3' - ﬂ3 m
—eco—Pr Q m L Pl.2 L2
L 02| L2m
r*— PO.7 ol L1y
K’EYJ_G'I CH. e R3' I_.rﬂ
P QH P13 ﬂf’_m_—; *
Pr = Preset
CR = Clear

Figure 11.5. Elevator interface to 8051.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Simulation of 8051 using Keil .S'afnvm'e (Lab Manual) 455

goto again,; //start from beginning
else |
{goto next; }
}
i
void main() |
{PO = OxfT; //make as input port
P1 = 0x00;
InitLed(); ffinitialize LCD
WriteString("KEY PRESSED=")
while(1)
{KeyScan(); //call keypad subroutine
WriteString("KEY PRESSED=")
Display(); //display the value
} , | }

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Appendix A 459

The CTS and RTS referred to as hardware control flow signals are used to
control the flow of the data. When the PC wants to send the data 1t asserts
RTS, and in response if the modem is ready to accept the data it sends CTS.
If modem does not activate CTS due to any reason (say lack of room, no
connection, etc), the PC de-asserts the DTR and tries again. DTR and DSR
are used by the PC and modem to indicate that they are ON.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Appendix B 463

B.1. B051 Instruction set summary (Continued)

- Opcliztor Qeclllator
Mnamonic Dascription Byls Period Mnemonic Dascription Byté Period
| DATA TRANSFER (Continued) SO0LEAN YARIABLE MANIPULATION
MOV @R direct Move direct 24 CLR c Clear Carry 1 12
byte 1o CLR bit Clegr direct bit 2 12
incirect FAM SETRE C Set Carry 1 12
MOV eRi #dala Move 12 SETE bit Sat direct bit 2 12
immadiate CPL G Complement 1 12
data 1o Carry
indirect RAM GPL bit Complemeant 2 12
MOV DPTR,#datals Load Data 24 direct bit :
Pointer with a AML C.bit AND direct bit 2 24
16-bit constant | 1o CARRY
MOVC A®A+DPTR Move Code 24 ANL C/bit ANDcomplement 2 24
byte retatve io of direct bit
: DPTR o Acc to Carry
MOVC ASA+PC Move Code £4 DAL . bit OR direct bit 2 24
biyts relative 1o to Cany
PCio Acc OAL C./bit OR complement 2 24
MOVX A @Ri Mowe 24 of direct hit
Extamal to Cairy
RAM (8-bit MOV Cphbit Move direct bit 2 12
addr) to Acc to Carry _
MOVY A2DPFTR Move 24 MOV bitC Move Carry o 2 24
Extemal direct bit
RAM [16-bit JC rel Jump i Carry 2 24
addr) to Acc is sat
MOVX &RiA Move Acc 10 24 JNC rel Jump if Carry 2 24
Exiernal FLAM not sat
(B-bit addr) J8 bitral Jump if direct 3 24
MOVX @DPFTR.A Move Acc 1o 24 Bit is sat
External RAM JNB bitral Jump il direct 3 24
{16-bit addr) Bit is Not sat
PUSH diect Push direct 24 JBC bitral Jurp if direct a3 24
byte anto Bitissol &
stack claar bit
POP direct Pop direct 24 PROGRAM BRANCHING
byte from ACALL addri! Absolute 2 24
Stick Subtwoutine
XCH ARn Exchange 12 Call
ragisles with LCALL addrié Long 3 24
Accumiator Subroutine
XCH Adwect Exchangs 12 Cali
direct byle RET Retum from 1 24
with Subroutine
Accumuiaton RET! Retum from 1 24
XCH ASR Exchange 12 interrupt
indirect AAM AJMP addr11 Absolute & 24
with Jump
Ascumgator LIMP addrié Long JJump 3 24
XCHD A @RI Exchange low- 12 SMP el Shart Jumnp 2 24
order Digit {redative addr)
indirect AAM
with Acc

466 The 8051 Microcontroller

B.2. Instructions Opcodes in hexadecimal order (Continued)

a
;

SRR PR e RS R B BB BB B odRIZ AN TREERTERSE

=k BT OB =R PO P W R ORI ORI R RS PO R RO R RS L0 = = P ORI R R RS R RS PO R RO R PO D D R = R R PO = b e o ek el s e

GEEEEIEDEaaaRRERRRRERERLEEEE000000000RRERARRARAAAAS i

;
E

Code _of Bytes

i

BPBR I8 RPERUC R RSB e R R PR B AR B s S AR R2BRRBRRGEEES

- b i ek ook P o o=k B PO B DD G L) LD GO CO L0 G 4D LD LD L3 = B3 M P R R RO RS RS B RO RS P RO

SR Ll F T e g g

9EOEBD L E R RRERRRRRRSS L DO NERS FRAUPEERHRHS |

AR1
AR2

AR4
ARS
ARS

C./bit adkdr
cone s
C.bit addr

SRO data sddr
@R1,.data nddr
RO.dats addr
R1,date addr
R2,datn addr
A3,data eddr
R4, data addr
RS,duta addr
P, date addr
R7.data agdr
C./bit addr
code addr

bt addr

A, #dats code addr

A deta addr,coce addr
OR0, # data.code addr
8R1, #data,code addr
RO, ¢ data code addr
A1, #data,code atdr
A2, # data,code addr
R3, # data.code addr
R4, # data code addr
RS, #data.code addr
RE, # data.code addr
R7,#data,code addr
dala sddr

CoCa adkdr

bit addr

A data addr
AeR0
A @R

AR1

i References l

1. Intel 8051 manual at “http://www.intel.com/design/mcs51/manuals/272383.htm™

2. Ramesh S Gaonkar, “Microprocessor Architecture, Programming and Applications
with the.B085", Fourth Edition, Penram International.

3. Kenneth J. Ayala ; “The 8051 Microcontroller Architecture, Programming &
applications” 2e, Penram International, 1996/Thomson Learning 2005

4. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; “The
8051 Microcontroller and Embedded Systems—using assembly and C - PHI,
2006/Pearson, 2006

5. Predko ; “Programming and Customizing the 8051 Microcontroller” —, TMH

6. Raj Kamal, “Microcontrollers: Architecture, Programming, Interfacing and S}rste:m_
Design”, Pearson Education, 2005

7. Ajay V.Deshmukh; “Microcontrollers- Theory and Applications”, TMH,2005

8. ESA (Electro Systems Associates) Microprocessor / Microcontroller Trainers and
Interface Modules manual,
http://esaindia.com/prdrng_microprocessor_electro.htmI#ESAMCB3S1

9. Dr. Ramani Kalpathi and Ganesh Raja, “Microcontrollers and Applications”, 1 rev
edn, Sanguine Technical Publishers, 2008

469

Copyrighted material

llndex i

A CALL instruction, 178
ADC (808/0B09, 397 decrementing, 137
ADC (848, 399 incrementing, 137
ADC-analog-to-digital converters, 393 jump and call instruction, 168
interfacing ADC 0804 to 8051, 395 logical operations, 149
parameters of ADC, 394 multiplication, 139
Addition, 132 subtraction, 138
Address bus, 4 Assembly language, 104
Addressing modes, 112 ' addressing modes, 103, 112
Algorithm, 108 data transfer, 103
Alphanumeric codes, 40 execution of the program by 8051, 108
AND operation, 149 flow charts, 108
Architecture of 8051, 47 immediate addressing mode, 113
block diagram of 8051, 48 indirect addressing mode, 118
clock. 31 program code in ROM, 107
data transmission and reception, 87 programming, 103
external memory, 60 steps to create, 106
I/O Ports, 78 structure of, 105
internal memory, 38 :
internal RAM, 38 B
iﬂmm.m ROM, 60 Baud rate, 83
mackire Cyole, Sl 08 BCD addition, 36
memory address decodiig, 62 Binary digits, 3
e dmgram A Binary system, 24
DRACing a:poc, 81 Bit jump instructions, 171
ITRIREY J88KS, 2 Bit level logical operations, 155
registers of, 53 Bus. 4
r:gistﬂrs of 8051, 50 B}"tﬂ jumP instructions, 173
SBUF register, 87
serial data transmission modes, 87
serial input/output, 82 C
SFR’s, 71 Cache memory, 15
stack, 69 CALL instruction, 178
TCON register, 77 subroutine, 178
timer modes, 75 Central processing unit, 2, 4
TMOD Register, 71 : CISC (complex instruction set computers), 10
writing to & Port, 81 Clear accumulator, 154
Arrays, 185 Code conversions, 218
ASCIL 6 Complement accumulator, 154
Assembly language, 131, 167 Computer architecture, 16
addition, 132 Harvard architecture, 17

471

472 The 8051 Microcontroller

Von Neumann architecture, 16 8051 Microcontroller, 48
Computing languages, |1 block diagram of 8051, 48
Control bus, 3 clock, 31
Counters, 69, 231 : data transmission and reception, 87

application, 251 external memory, 60

' 1/O Ports, 78
internal memory, 38
D internal RAM, 58
Data bus, 3 internal ROM, 60
Data exchange, 123 machine cycle, 51, 96
Data pointer (DPTR), 34 memory address decoding, 62
Data representation, 23 pin diagram, 31

alphanumeric codes, 4} reading a port, 81

binary system, 24 register banks, 58

complements, 29 registers of, 53
. conversion, 26 | registers of 8051, 50

decimal fixed-point representation, 36 SBUF register, 87

decimal system, 28 serial data transmission modes, 87

fixed-point representation, 32 serial input/output, 82

floating-point representation, 38 _ SFR’s, 71

gray cm:lc 39 stack, 69

hexadecimal system, 25 TCON register, 77

octal system, 23 timer modes, 75

signed 1's complement representation, 33 TMOD register, 71

signed 2's complement representation, 33
signed integer representation, 33
signed-magnitmde representation, 33

writing to a Port, 81

Data transfer, 121 F

Data transmission and reception, 87 Firmware, 3

Data types in 8051 *C’, 185 Fixed-point representation, 32
DC motor interfacing, 385 Flag register, 54

Decimal addition, 141 Floating-point representation, 38
Decimal fixed-point representation, 36 Flow charts, 108

Decimal representation, 28
Declaring variables, 184

Decrementing, 137 G

Delay generation in C, 193 Generation of square wave, 236

Digital computer, 2 Gray code, 39 :
architecture, 2
terminology associated, 3

Direct addressing mode, 115 H

Division, 140 Hardware, 3

Dynamic RAM, 13 Harvard architecture, 17

Hexadecimal system, 23
High-level languages, 104

E
. Edge triggered interrupts mode, 313

Elevator interface, 449 1

EPROM, 15 Immediate addressing mode, 113

Exclusive OR operation, 150 Incrementing, 137

External interrupts, 3110 Indexed addressing mode, 120
edge triggered interrupts mode, 313 Indirect addressing mode, 118
level Triggered interrupt mode, 310 Interfacing, 335
serial communication interrupt, 316 DC motor interfacing, 385

8051 Architecture, 47 interfacing a DAC, 375

Index

473

interfacing a LED and a 7-segment
. display, 336

interfacing a single key, 355

interfacing ADC 0804 to 8051, 395

interfacing keyboard, 360

stepper motor interfacing, 365
Interfacing a DAC, 375 '
Interfacing ADC 0804 to 8051, 395
Interrupt destination, 92
Interrupt enable (IE) SFR, 93
Interrupt priority (IP) SFR, 94
Interrupts, 91, 293

changing interrupt priority, 324

execution of an interrupt, 296

external interrupts, 310

serial communication interrupt, 316

J

Jump and call instruction, 168
long absolute Range, 170
relative range, 168
short absolute range, 169

Jump Instructions, 170
bit jump instructions, 171
byte jump instructions, 173
unconditional Jump, 170

L
LCD display, 341
- Level triggered interrupt mode, 310
Logical operations, 149
AND operation, 149
exclusive OR operation, 150
OR operation, 150
Long absolute range, 170

M

Machine cycles, 96

Mainframes, 3

Matrix keypad, 360

Memory, 4, 12

Memory address decoding, 62

Memory Latency, 15

Memory unit, 2

Microcontroller
algorithm for DC motor interface, 448
application in mode 2, 246
assembly language, 167
CALL instruction, 178
changing interrupt priority, 324
code space, 226

creating and compiling a uVision2
project, 409

DC motor interfacing, 385

elevator interface, 449

execution of an interrupt, 296

external interrupts, 310

interfacing a DAC, 375

interfacing a LED and a 7-segment
display, 336

interfacing a single key, 355

interfacing ADC 0804 to 8051, 395

interfacing keyboard, 360

interrupts, 294

jump and call instruction, 168

large time delays, 243

operators in 8051C, 207

procedure for doubling the baud rate, 277

programming in ‘C’, 184
programming ports, 198
second serial port, 281
serial communication interrupt, 316
serial data transfer, 264
serial port, 231
serial port programming, 213
stepper motor interfacing, 365
stepper motor interfacing to 8051, 437
timer mode () programming, 238
Microcontroller, 47, 131
addition, 132
block diagram of 8051, 48
decrementing, 137
incrementing, 137
logical operations, 149
multiplication, 139
programming, 131
registers of 8051, 50
rotate operation, 158
subtraction, 138
swap operation, 162
Microcontrollers, 7
4-bit microcontrollers, 19
8-bit microcontrollers, 19
apphcations, 9
evolution of, 18
selection of, 18
Microprocessor, 2, 1
Minicomputer, 3
Multi-tasking, 7
Multiplexed 7-segment display, 339

N
Number system, 24
Irgaae, 24

474 The 8051 Microcontroller

binary system, 24

complements, 29

conversion, 26

decimal fixed-point representation, 36
decimal system, 28

floating-point representation, 38

gray code, 39

hexadecimal system, 25

octal system, 25

radix, 24

signed 1's complement representation, 33
signed 2's complement representation, 33
signed integer representation, 33
signed-magnitude representation, 33

O

Octal system, 23
Operating system, 6
Operators in 8051C, 207
OR operation, 150
Overflow, 35

P
Polling sequence, 93
POP instruction, 122
Ports, 5
Power mode control (PCON) SFR, 85
Princeton architecture, 16
Program counter, 54
Programmable read-only memory, 14
Programming 8051 with C, 183
arrays, 185
code space, 226
data types in 8051 ‘'C’, 185
declaring variables, 184
delay generation in C, 193
number representation, 187
operators in 8051C, 207
programming ports, 198
serial port programming, 213
strings, 185
writing a simple C program, 187
PUSH instruction, 121
PWM control of DC motor, 391

R
(r — 1)’s complement, 29
r’s complement, 30
r's complement, 30
subtraction of unsigned numbers, 31
Random access memory, 12
Rate of transmission, 83

Read only memory, 14
Register addressing mode, 114
Register section, 3
Registers of 8051, 53
A and B registers, 34
data pointer, 54
* program counter, 54
program status word, 54
special function registers, 57
Relative range, 168
RISC (reduced instruction set computers), 10
Rotate operation, 158
rotate accumulator right, 159
rotate through the carry, 160

S
SBUF register, 87
Serial ADCs, 401
Serial communication interrupt, 316
Serial data transfer, 264
Serial data transmission modes, 87
Serial input/output, 82
Serial port control (SCON) register, 84
Serial port programming, 213
Serialize data, 161
Short absolute range, 169
Signed addinon, 136
Signed integer representation, 33
Signed numbers, 34
arithmetic addition, 34
arithmetic subtraction, 35
Simulation of 8051 using Keil Software, 407
algorithm for DC motor interface, 448
arithmetic instructions, 417
conversion programs, 432
counters, 426
creating and compiling a ¢ Vision2
project, 409
data transfer instructions, 411
elevator interface, 449
interrupts, 408
logical instructions, 422
program illustrating bit manipulations, 421
programming in ALP, 411
serial data transmission, 428
stepper motor interfacing to 8051, 437
timer delay program, 429
Software, 3
Stack, 69
Stack pointer, 69
Standards in serial /O, 84
Stepper motor interfacing, 365
Stepper motor interfacing to 8051, 437
Strings, 185 \

Index

475

Subroutine, 178

Supercomputers, 3
Swap operation, 162

T

TCON register, 77

Time sharing, 6

* Timer mode () programming, 238

Timer modes, 75

Timers, 69, 231
application in mode 2, 246
generation of square wave, 236

large time delays, 243 .
time delay generation, 232

'TMOD register, 71

U
Unconditional jump, 170
Unit-distance codes, 39

\'
Von Neumann architecture, 16

The

300’

Microcontrollers € trnres

Architecture, Programming anad Applications Andhe Pallav

The 8051 is a widely used microcontroller due to its simple architecture and ease of
programming. This book presents in detail the architecture and programming of 8051 in both
assembly language and in C, and discussed some typical applications of BO51 in detail. The
lucid explanation of the subject is supported by a number of programming examples in
assembly language and in C to strengthen the reader’s comprehension. The fundamental
concepts presented in the text will enable the reader to understand any other microcontroller
available in the market with ease. Though designed for a undergraduate semester course on
8051, anyone interested in the subject will find this book an invaluable guide to the subject.

K. Uma Rao is the head of the Department of Electronics and Communication at R.N.
Shetty Institute of Technology, Bengaluru.

Andhe Pallavi is the head of the Department of Instrumentation Technology at R.N. Shetty
Institute of Technology, Bengaluru.

- Www. pearsoned.co.an

ALWAYS LEARNING P E A R S O N

