Programming with

]ava-

A Primer

‘—..__.....—-"'_____,
E. BALAGURUSAMY

How a unigque opportunity to access the Web Resources!

[Lok for the Genuineness Cerlificate inside the book]

;

[scratch the silver ink on the Genuineness Cerificate 1o find your Unigue Access Number®]

'

[Accass the website }

http:/fwww.mhhe.com/balagurusamyljavale

v

L Click on the First Time Users Link in the OLC menu on your left]

'

[At the botlom of the text appearing on your Right-Hand- Side, find Register Now

and click on the Student link
[Mow click on tha link that says: | have a registration code that came with my book. J

'

{ Type in your Unique Access Numbear when asked to enter your code J

!

{ Create your Personalized Account by selecting your username and password J

'

L Click on the Student Edition Link in the OLC menu on your left J

'

[Login in using your parsonalized username and password]

* Thig numbar s for one fime uso and s self destructible

Programming with

TAVA

m"ﬁM'ME
r '—"_"_"_'_‘.' RS - _ i

-....._.. e E—— .___ y

i GENUINENESS CERTIFICATE g

This is to certify that this book is an authentic and genuine

T

: puh]mlt:mn of Tata MolGraw-Hill]"ul:]uhm.g 'l:-nmpinr Limiated

Tata McGraw-Hill Publishing Company Ltd. ﬁ
7, West Patel Nagar, New Delhi - 110 008, India

4 Piwinrose af oy MlCardn- il { ueii

R T W MMHM

About the Author

E Balagurusamy is Chairman, EBG Foundation. Earlier, he was the Vice Chancellor, Anna Univer-
gity, Chennai. He is a teacher, trainer, and consultant in the fields of Information Technology and
Management. He holds an MLE. (Hons) in Electrical Engincering and Ph. D. in Systems Engineening
from the Indian Institute of Technology, Roorkee. His areas of interest include Object-Ornented Software
Engineering, Electronic Business, Technology Management, Business Process Re-engineering, and
Total Quality Management.
A prolific writer, he has authored a large number of research papers and several books. His best
selling books, among others include:
Programming in BASIC, 3/e
Programming in ANSI C, 3/e
Object-Oriented Programming with C+ +, 3/e
Programming in C#
» Numerical Methods, and
s Reliability Engineering
A recipient of numerous honours and awards, he has been listed in the Directory of Who's Who of
Intellectuals and in the Directory of Distinguished Leaders in Education.

Programming with

JAVA

A Primer
Third Edition

E Balagurusamy
Chairman

ERG Foundation

K F
N

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

MeGraw-Hill Offices

New Delhi New York St Louis San Francisco Awuckland Bogotd Caracas
Kuala Lumpur Lisbon London Madnd Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokvo Toronto

7
—=l| Tata McGraw-Hill

Published by the Tata McGraw-Hill Publishing Company Limited,
7 West Patel Nagar, New Delhi 110 (08

Programming with Java - A Primer, 3/e

Copyright © 2007, by Tata McGraw-Hill Publishing Company Limited.

Mo part of this publication may be reproduced or distnbuated 1n any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permis-
sion of the publishers. The program listings {if any) may be entered, stored and executed in a computer system,
but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,
Tata MeGraw-Hill Publishing Company Limited.

First reprint 2007
DOLCRADLERCDEX

ISBN 0-07-(41713-9

Head - Higher Education: 5 Ragharhaman
Executive Publisher: Fibha Mahajan
Editonial Executive: Shalini Jha

Editorial Services Manager: Mini Narayanan

Deputy Ceeneral Manager - Marketing: Mickae! J. Cruz
Asst. Product Manager: Bijn Gramesan

Asst. General Manager - Production: 8 L Dogra
Manager - Production: P I Pandita

Information contained in this work has been obtained by Tata McGraw-Hill, from sources belicved o be
| reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any
errors, omissions, or damages arising out of use of this information, This work is published with the
understanding that Tata McGraw-Hill and itz authors are supplying information bul are not attempting 1o
render engineering or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, A1-B, DDA Market, Paschim Vihar, New Delhi 110 063, and printed at
Ciopson Papers Lid,, Noida

rhe MeGrow-Hill Compares

Dedicated o

Dr V Krishnamurthy
Chairman
National Manufacturing Compeliliveness Council
New Delhi

This oOne

CE1-YaD-PJaL

Copyrighted material

Contents

Preface o the Thing Edition XIX
Preface o the First Edition X
Acknowledeements cxi
1. Fundamentals of Object-Oriented Programming 1
1 1 Intraduction 1
1.2 Object-Oriented Paradigm 2
1.3 Basic Concepts of Object-Oriented Programming 3

Objects and Classes 3

Data Abstraction and Encapsulation 4
Inheritance J

Polvmorphism 5

Dyvnamiic Binding 6

Messape Communication &

L4 Benefits of OOP i

1.5 Applications of O0OP ®

1.6 Summary 9
Review Ouestions 9

2. Java Evolution 11

2.1 Java History I

2.2 Java Features 12

Compiled and fntevpreted 13
Platform-Independent and Portable 13
Ohject-Oriented 13
Bobust and Secune 13

Nistribited 13

Simple, Small and Familiar 14

wili

']fll“l.frﬂ'i'[[[ﬁ':f an ! ﬂ[[ff[:[:'[[.]fi' t !
High Performance 14

Dvnamie and Extensible 14

Ease of Development 14
Scalability and Performance 14
Monitoring and Manageability 15
Degktop Client 15

Misrellanenus Feagtures [§
23 How Java Differs from C and C++ |]
Java gnd C 16
Joavg gnd C++ J6
24 Java and Intermet 17
25 Java and World Wide Web 18
26 Web Browsers 19
Hotlavg N}
Netscape Navigator 20
Internet Explorer 20
2.7 Hardware and Software Reguirements 20
2.8 Java Support Systems 20
29 Java Environment 21
Java Development Kit 21
Application Programming Interface 22
2.10 Summary 23
Review CUuestions 23
3. Overview of Java Language 24
11 Intmduction 24
3.2 Simple Java Program 25
Opening Brace 26
The Main Line 26
The Output Line 26
i3 More of Java 21
LUse of Math Functions 28
3.4 An Application with Two Classes 28
1.5 Java Program Structure 29

t !:I:-“ﬂl E:“! :|“ e E;E::'!IEII!I '!!l
Package Statement 30
Import Statements 30
Interface Statements 30
Class Definitions 30

\Moin Method Class 10

16 Java Tokens 30
Jave Character Sei 31
Keyvwordy 32
fdentifiers 32
Literaly 33
Operatars 33
Separators 33
317 Java Siatements 34
3.8 Implementing a Java Program 33
Creating the Program 35
Compiling the Program 37
Running the Program 37

Machine Newtral 38
19 Java Virtual Machine 3R
3.10 Command Line Arguments 39
3.11 Programming Style 41
3.12 Summary 41
Review Questions 42
4. Constants, Variables, and Data Types 43
4.1 Introduction 43
4.2 Constants 43
Integer Constanis 43
Begl Constaniy 44

Single Character Constants 45
String Constants 45

Backslach Character Constgniy 43

43 Vanables a6
4.4 Data Tvpes 46
fnteger Types 47
Floating Poinr Tvpes 47
Character Tvpe 48
Boolean Tvpe 48
45 Declaration of YVanables 45
4.6 Giving Values to Vanables 49
Azxsignment Slatemeni 49
Biad Statemenr 50
4.7 Scope of Variables 5l
4.8 Svmbolic Constants 52
Modifiability 52
Understandability 52
4.9 Tvpe Castung 53

I - (— 53
4,10 Getting Values of Vanables 55

. e imgﬁ
4.11 Standard Default Values 57
4.12 Summary 57

Review (luesiions 57
Debugging Exercises 58

5. Operators and Expressions 60
5.1 Introduction 60
5.2 Anthmetic Operators &0

Inteper Arithmetic 6/
5.3 Relational Operators 62
5.4 Logical Operators 64
5.5 Assignment Operators 65
5.6 Increment and Decrement Operators 6
5.7 Conditional Operator 67
5.8 Bitwise Operators HE
5.9 Special Operators i1}

Instanceof Operaior 68

Dot Operator 69
5.10 Arithmetic Expressions H
5.11 Ewaluation of Expressions 69
5.12 Precedence of Arithmetic Operators 70
5.13 Type Conversions in Expressions 71

Automatic Tvpe Conversion 71

Casting a Value 72

Generic Tvpe Casting 73
5.14 Operator Precedence and Associativity 74
3,15 Mathematical Functions 16
5.16 Summary 77

Review Ouestions 78

Debugwing Exercises 800

6. Decision Making and Branching 81
6.1 Introduction g1
6.2 Decision Making with If Statement 82
6.3 Simple If Statement &3
6.4 The If Else Statement %5
6.5 Mesting of If....Else Statements 27
6.6 The Else If Ladder 20
6.7 The Swilch Statement 93
6.8 The 7 : Operator 97
6.9 Summary 98

Review (Ouestions 98
Debugging Exercises 101

Cortorts a

7. Decision Making and Looping 105
7.1 Imroduction 105
12 The While Statement 107
13 The do Statement 108
14 The for Statement L1

Additional Features of for Loop 112
Nesting of for Loops 114
The Enhanced for Loop 115
7.5 Jumps in Loops 17
Jumping Out of a Loop 117
Skipping a pari of a Logp 118
7.6 Labelled Loops 119
7.7 Summary 121
Review Ouestions 121
Debugping Exercises 123

8. Classes, Objects and Methods 126
1 Introduction 126
8.2 Defining a Class | 26
83 Fields Declaration 127
8.4 Methods Declaration 127
8.5 Creating Objects 130
#.6 Accessing Class Members 131
87 Constructors 133
.8 Methods Overloading 134
29 Stanic Members 135
8.10 Nesting of Methods | 36
B.11 Inheritance: Extending a Class 137

Defining a Subclass 138
Suhelaes Conctructor 40
8.12 Ovemniding Methods 142
213 Final Vanables and Methods |43
£ 14 Final Clusses 143
‘inalis 5 144
B16 Abstract Methods and Classes 144
#.17 Methods with Varargs 145
B 15 Visibihitv Control 146

piblic Access {47
frienmaly Accexs 147
protected Access 147
private Access 147

xii -im_ Hents
private protected Access 147
Rules of Thumb 148
8.19 Summary 148
Review Ouestions 149
Debugging Exercises 130
9. Arrays, Strings and Vectors 153
91 Introduction 153
9.2 One-dimensional Arrays 153
9.3 Creating an Array 153
Declaration of Arravs {33
Creation of Arrays 135
Initialization of Arravs 156
Array Length 157
94 Two-dimensional Arrays 158
Fariable Size Arravs 1061
9.5 Strings 162
String Arrays 162
String Methods 163
StringBuffer Class 164
9.6 Vectors 166
9.7 Wrapper Classes 167
Awtoboxing and Unboxing 70
9.8 Enumerated Types 172
99 Annotations 173
9.10 Summary 176
Review Chiestions 170
Debugging Exercises 178
10. Interfaces: Multiple Inheritance 181
10,1 Introduction 181
0.2 Defining Interfaces 182
10,3 Extending Interfaces 183
10,4 Implementing Interfaces 184
10,5 Accessing Interface Variables 186
10,6 Summary 188
Review Questions [89
Debugring Exercises 189
11. Packages: Putting Classes Together 192
L1 Introduction 192
11.2 Java APl Packages 193
11.3 Usmg System Packages 194
11.4 Naming Conventions 195
11.5 Creating Packages 1935

Confents xiil
11.6 Accessing a Package 196
11.7 Using a Package 197
11.8 Adding a Class 1o a Package 201
11.9 Hiding Classes 202
11.10 Static Import 203
11.11 Summary 204
Review Questions 204
Debueoing Exercizes 205
12. Multithreaded Programming 207
121 Iniroduction 207
12.2 Creatng Threads 208
12.5 Extending the Thread Class 210
Declaring the Class 210
fmplementing the vuni{) Method 210
Starting New Thread 211
An Example of Using the Thread Class 211
124 Stopping and Blocking a Thread 213
Stopping a Thread 213
Blocking a Thread 24
12.5 Life Cycle of a Thread 214
Bunmable Stape 215
Running State 216
Rlswdesd g T
Dead Stare 27T
126 Using Thread Methods 217
12.7 Thread Exceptions 219
12,8 Thread Priority 220
12.9 Svnchronization 223
12.10 Implementing the ‘Runnable’ Interface 224
12.11 Summary 225
Review Quesiions 226
Debugeing Exercises 220
13. Managing Errors and Exceptions 230
131 Introduction 230
13.2 Tvpes of Errors 230
Compile-Time Errors 230
Bun-Time Frrors 23]
13.3 Exceptions 232
134 Syniax of Exception Handling Code 234
13.5 Multiple Catch Statements 234
13.6 Using Finally Statement 238

Xiv ‘Contents
13.7 Throwing Our Own Exceptions 239
135 Using Exceptions for Debugging 240
13.9 Summary 241
Review Questions 241
Debugeing Exercises 241
14. Applet Programming 244
14.1 Introduction 244
Local and Remote Applets 244
14.2 How Applets Differ from Applications 245
14.3 Preparing to Write Applets 246
4.4 Building Applet Code 247
14.5 Applet Life Cycle 249
Imitialization State 249
Running State 250
Idle or Stopped State 250
I!!:::!“! 5“[[5' '!Iitl
Lisplay State 251
146 Creating an Executable Applet 251
14.7 Designing a Web Page 251
Comment Section 252
Head Section 252
Hody Section 253
4.8 Applet Tag 253
149 Adding Applet to Himl File 254
14.10 Running the Applet 255
14.11 More About Applet Tag 158
14.12 Passing Parameters to Applets 257
14.13 Aligning the Display 259
14.14 More About Html Tags 261
14.15 Displaying Mumerical Values 261
14.16 Getting Input from the User 2613
Program Analvsis 265
14.17 Summary 265
Review Ouestions 265
Debugging Exercises 266
15. Graphics Programming 270
15.1 Imtroduction 270
15.2 The Graphics Class 270
15.3 Lines and Rectangles 272
154 Circles and Ellipses 274
15.5 Drawing Arcs 275
15.6 Drawing Polygons 277

“Cantents XV
15.7 Line Graphs 279
15.8 Using Control Loops in Applets 281
15.9 Drawing Bar Charts 282
15.10 Summary 2584
Review Questions 285
Debugging Exercises 283
16. Managing Input/Qutput Files in Java 287
1651 Imtroddnetion 27
16.2 Concept of Streams 2BE
16,3 Stream Classes 280
6.4 Byte Stream Classes 291
Inpuit Stream Classes 29)
Chitput Stream Classes 292
16.5 Character Stream Classes 294
Reader Stream Classes 294
Hriter Stregam Claseery 203
6.6 Using Streams 205
16.7 Other Useful 'O Classes 296
16.8 Using the File Class 297
16.9 Input/Output Exceptions 297
1610 Creation of Files 298
16.11 ReadingWniting Characters 300
16.12 ReadingWriting Bytes 302
16.13 Handling Primitive Data Types A6
16.14 Concatenating and Buffering Files 310
16.15 Random Access Files 312
16.16 Interactive Input and Output 114
Simple Input and Outma 314
Crraphical Input and Cutput 317
16.17 Other Stream Classes 323
Chject Streams 323
Piped Streams 323
16,18 Summary 324
Review Uniestions 325
Debugying Exercises 326
17. Assertion and Design by Contract 329
7.1 Introduction 129
17.2 Design by Contract 129
17.3 Implementing Assertion 330

Compiling the Assert Statement 331
Enabling and Disabling Assertions 331

xvi

174 Assertion Rules 332

17.5

Checking the Method Arguments 332

Using Assertion in the Default Case of the Switch Statement 332

Make Use of an Assertion Descriptive 333

Avoid Processing in an Assertion Condition 334

Avoid Catching Assertion Related Exception 334

Avoid Evaluating more than one Condition in an Assert Siatement 335

Creating a Java Program Using Assertion 136

Debugging Exercises 336

18 Java Collections 341
18] Introduction 341
182 Owerview of Interfaces 341

The Collection Interface 342
The Set Interface 343

The List Interface 343

The SortedSet Interface 344
The Queue Interface 345

The Map Interface 345

The SortedMap Interface 346
The Iterator Interface 346

183 Overview of Classes 3147

18.4

The AbstraciCollection Clasy 347

The Abstracelist Clacs 347

The ArravList Class 348

The LinkedList Class 349

The HashSet Clase 351

The TreeSet Claxs 352

The Vector Class 352

The Stack Clage 353

The Hachinhle Clave 354

Overview of Algorithms 355

The Sort Algorithm 336

The Shuffle Algorithm 356
Manipulating Algorithms 356
The Search Algorithm 356
Debugging Exercises 338

Appendices

Appendix A: Java Language Reference 364

Appendix B: Java Kevwords 371

Appendix C: Differences Between Java and C/C++ 374
Appendix D: Bit-level Programming 378

Appendix E: Java AP! Packages 384

Bibliowraphy

Appendix F: Java Classes and Their Packages 39

Appendix G: Whatk New in Java 1] and Java 2 300
Appendix H: Deprecated Classes and Methoas 410

Appendix I: Statistics of Java Packages 419
Appendix J: § CJ P Exam Model Questions 422
Appendix K: Points io Remember 455
Appendix L: Common Coding Evrors 458
Appendix M: CGlossary of Java Terms 460
Appendix N: Projects 468

xvil

484

{ndex

483

Copyrighted material

Preface to the Third Edition

Sun Microsystems has added many improvements and enhancements to Java since its release in 1995,
Java 2, released in 1999, incorporated a mumber of new features to improve its performance. The latest
release of Java is J25E 5.0 (Java 2 Standard Edition, Version 5.0). J25E 5.0, released in 2004, enhances
the power and scope of the language by incorporating several important features such as generics,
enhanced for loop, varable arguments in functions, boxing/unboxing, enumerations and static import.

In this third edition, the book incorporates not only the major updates of JZSE 5.0 but also improves
the content wherever necessary. Debugging is an important dnill in enhancing the programming skall of
a leamer. A sechion titled “Debugging Exercises™ has been included at the end of each chapter to
provide an opportumity to test the understanding of language features. This edition also includes two
new chapters on Assertion and Java Collections.

E BaLacurusamy

Preface to the First Edition

Java is vet another computer language but with a difference. It 1s the only language that is purely
object-oriented. Javas designers have borrowed the best features of many existing languages such as C
and C++ and added a few new features to form a simple, easy-to-leamn and object-oriented language. It
is the most complete programming language available today. It i1s also a secure language, making it
well-suited for Intemet programming. One of the important reasons for Java's success, apart from its
object-orientation, is the amazing functionality it adds to the World Wide Web.

Java has two lives, one as a stand-alone computer language for general-purpose programming and
the other as a supporting language for Intemnet programming. The general-purpose programs are known
as applications and programs written for Internet are known as applets. Till recently, C++ has been
considered as an industry standard language for object-oriented programming. Now the battle between
Java and C+ + has begun. We must get ready for an industry starving for Java programmers.

This book is for novice as well as experienced programmers. While the book assumes that the
reader’s ultimate goal 15 to develop Java programs, both applications and applets, it does not assume
any significant knowledge of programming on the part of the reader. If the reader is a C or C++
programmer, he or she may probably be able to read through some of the initial chapters quickly.
However, a novice reader will need to go through the whole book carefully.

This book comprehensively covers all aspects of Java language. Beginning with an introduction to
the language and its relationship with the Internet and World Wide Web, it explores Java's object-
oriented features, and then moves on to discuss advanced topics that are unique to Java.

The concept of learning by example has been stressed throughout the book. Each major feature of
the language is treated in depth followed by a complete program example to illustrate its use, Wherever
necessary, concepts are explained pictorially to facilitate better understanding.

The book contains a large number of example programs. All programs have been tested and,
wherever possible, the nature of output has been discussed. These programs also demonstrate the
~ general principles of a good programming style. This book has all that a reader needs to start
programming in Java right away.

Finally, this book is for everyone who is either excited about Intemet or interested in Java
Programming.

E BalLacUurusamy

Acknowledgements

MNo book 15 created entirely by an individual. Many people have helped to create this book and each of
their contribution has been valuable. The timely completion of this book is mainly due to the interest
and persuasion of late Prof, N K Venkatasubramanian who was not only my teacher and colleague but
also a good friend and guide. His confribution will be remembered forever.

[would like to thank many other individuals at PSG Institute of Management who have contributed
greatly to the success of this project. Thanks are due to G P Raja, S Lalitha, K Balakrishnan, S Saravanan,
I} R Pratibha, and G Nrithya for their valuable assistance m preparing the manuscript.

The idea of this book was planted by my wife, Sushila, while reading an article on Java in The Hindu
newspaper. My special thanks are due to her not only for the idea but also for the encouragement and
unstinted support throughout the wntng of this book.

Finally, I wish to thank the publishing professionals at Tata McGraw-Hill for bringing out the book
m 1ts present form in record time.

E BaLacurusamy

Copyrighted material

Fundamentals of
Object-Oriented Programming

F .
=)
f‘j 1.1 Introduction

One characteristic that 1s constant in the software industry today is the “change”. Change 15 one of the
most critical aspects of sofiware development and management. New tools and new approaches are
announced almost every day. The impact of these developments is often very extensive and raises a
number of issues that must be addressed by the software engineers. Most important among them are
maintainability, reusability, portability, security, integrity, and user friendliness of software products,

To build woday's complex software it is just not enough to put together a sequence of programming
statements and sets of procedures and modules. We need to use sound construction techniques and
program structures that are easy o comprehend, implement and modify in a wide variety of situations.

Since the invention of the computer, many programming approaches have been tried. These include
techniques such as modular programming, top-down programming, bottom-up programming and
structured programming. The primary molivation in each case has been the concemn to handle the
increasing complexity of programs that are reliable and maintainable. These techmiques became
popular among programmers over the last two decades.

With the advent of languages such as C, structured programming became very popular and was the
paradigm of the 1980s, Structured programming proved to be a powerful tool that enabled programmers
to write moderately complex programs fairly easily. However, as the programs grew larger, even the
structured approach failed to show the desired results in terms of bug-free, easy-to-maintain, and
reusable programs.

Object-Orniented Programming (OOP) is an approach to program organization and development,
which attempis to eliminate some of the pitfalls of conventional programming methods by incorporating

the best of structured programming features with several new concepis. It is a new way of organizing
and developing programs and has nothing to do with any particular language. However, not all
languages are suitable to implement the OOP concepts casily. Languages that support OOP features
include Smalltalk, Objective C, C++, Ada and Object Pascal. C++, an extension of C language, is the
most popular OOP language today. C++ is basically a procedural language with object-oriented
extension. Java, a pure object-oriented language, is one of the recent languages added to this list, the
latest one being C#.

=
pie
el]

1.2 Object-Oriented Paradigm

The major objective of object-oriented approach is to eliminate some of the flaws encountered in the
procedural approach. OOP treats data as a critical element in the program development and does not
allow it to flow freely around the system. li ties data more closely to the functions that operate on it and
protects it from unintentional modification by other functions. OOP allows us to decompose a problem
into a number of entities called Objects and then build data and functions (known as methods in Java)
around these entities. The combination of data and methods make up an object (see Fig. 1.1).

(=50
T

Object = Data + Methods

The data of an object can be accessed only by the methods associated with that object. However,
methods of one object can access the methods of other objects. Some of the features of object-oriented
paradigm are;

* Emphasis is on data rather than procedure.
Programs are divided into what are known as Objects.
Data structures are designed such that they characterize the objects.
Methods that operate on the data of an object are tied together in the data structure.
Data is hidden and cannot be accessed by external functions.
Objects may communicate with each other through methods.
New data and methods can be easily added whenever necessary.
Follows bottom-up approach in program design.

Ohject-oriented paradigm 15 the most recent concept among programming paradigms and still it
means different things to different people. It is therefore important to have a working definition of
object-oriented programming before we proceed further.

Our definition of object-oriented programming is; Object-oriented programming is an approach
that provides a way of modularizing programs by creating partitioned memory area for both
data and functions that can be used as templates for creating copies of such modules on demand.
This means that an object is considered to be a partitioned area of computer memory that stores data
and a set of operations that can access the data. Since the memory partitions are independent, the
objects can be used in a variety of different programs without modifications.

-y

1.3 Basic Concepts of Object-Oriented
Programming

As mentioned earlier, object-oriented is a term, which is interpreted differently by different people. It
is therefore necessary to understand some of the concepts used extensively in object-oriented
programming. We shall now discuss the general concepts of OOP which form the heant of Java

language.

Objects and Classes

Objects are the basic runtime entities in an object-onented system. They may represent a person, a
place, a bank account, a table of data or any item that the program may handle. They may also represent
user-defined data types such as vectors and lists. Any programming problem is analyzed in terms of
objects and the nature of communication between them. Program objects should be chosen such that
they match closely with the real-world objects. As pointed out earlier, an object takes up space in the
memory and has an associated address like a record in Pascal, or a structure in C.

When a program is executed, the objects interact by sending messages to one another. For example,
‘customer” and ‘account’ are two objects in a banking program, then the customer object may send a
message to the account object requesting for the balance. Each object contains data and code to
manipulate the data, Objects can interact without having to know the details of each other’s data or
code. It is sufficient to know the tvpe of message accepted and the type of response returned by the
objects. Although different authors represent them differently, Fig. 1.2 shows a notation that is
popularly used to represent an object in object-oriented analysis and design.

We just mentioned that objects contain data and code to manipulate that data. The entire set of data
and code of an object can be made a user-defined data rype using the concept of a class. A class may be
thought of as a *data type’ and an object as a *vanable’ of that data type. Once a class has been defined,
we can create any number of objects belonging to that class. Each object is associated with the data of
type class with which they are created. A class is thus a collection of objects of similar type. For
example, mango, apple and orange are members of the class fruit. Classes are user-defined data types
and behave like the built-in types of a programming language. For example, the syntax used to create
an object is no different than the syntax used to create an integer object in C. If fruit has been defined
as a class, then the statement

fruit mango®

will create an object mango belonging to the class fruit.

Person Obyect
Mame Data
S
BasicPay
Salary () Methods
Tax ()
WEIgENY Reprosentaton of an object

Data Abstraction and Encapsulation

The wrapping up of data and methods into a single unit (called class) is known as encapsulation, Data
encapsulation is the most striking feature of a ¢lass. The data is not accessible to the outside world and
only those methods, which are wrapped in the class, can access it. These methods provide the interface
berween the object’s data and the program. This insulation of the data from direct access by the program
is called data hiding. Encapsulation makes it possible for objects to be treated like ‘black boxes’, each
performing a specific task without any concemn for internal implementation (see Fig. 1.3).

information “n” Data Informafion “out”
- and
Mathod

'YFigN3 " Encapsulation—Objects as “black boxes'

Abstraction refers to the act of representing essential features without including the background
details or explanations. Classes use the concept of abstraction and are defined as a list of abstract
attributes such as size, weight and cost, and methods that operate on these attributes. They encapsulate
all the essential properties of the olyects that are 1o be created. Encapsulation is one of the three OOP
principles, the other two being inheritance and polymorphism,

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of another
class. Inheritance supports the concept of hierarchical classification. For example, the bird robin is a
part of the class flying bird, which i1s again a part of the class bird. As illustrated in Fig. 1.4, the
principle behind this sort of division is that each derived class shares common characteristics with the
class from which it is derived.

s B R—
% MR
Bird
Adtrabates: A il stes:
.-_.-'f "H-x .-';.),
_.-" 'H.H r "\-‘\.
I S y I y
Rabin Swallow | Penguin Wil
—e e e | ————
Fars B
i w0

SEGy Proporty mhertonc

In OOP, the concept of inheritance provides the idea of reusability. This means that we can add
additional features to an existing class without modifying it. This is possible by deriving a new class
from the existing one. The new class will have the combined features of both the classes. Thus the real
appeal and power of the inheritance mechanism is that it allows the programmer to reuse a class that is
almost, but not exactly, what he wants, and to tailor the class in such a way that it does not introduce
any undesirable side effects into the rest of the classes. In Java, the derived class is known as ‘subclass’.

Mote that ecach subclass defines only those features that are unique to it. Without the use of
inhertance, each class would have to explicitly include all of its features.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism means the ability to take more than
one form. For example, an operation may exhibit different behaviour in different instances. The
behaviour depends upon the types of data used in the operation. For example, consider the operation of
addition. For two numbers, the operation will generate a sum. If the operands are strings, then the
operation would produce a third string by concatenation. Figure 1.5 illustrates that a single function
name can be used to handle different number and different types of arguments. This is something
similar to a particular word having several different meanings depending on the context.

Shape
Diraw [)
Jl"'... ‘ lu.
Circle Object Box Object . Triangle Object |
Draw {circla) Draw {box) | Draw ma-uh]__[

frﬁ]-! Pol -

Polymorphism plays an important role in allowing objects having different internal structures to
share the same external interface. This means that a general class of operations may be accessed in the
same manner even though specific actions associated with each operation may differ. Polymorphism is
extensively used in implementing inheritance.

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response o the call.
Dynamic binding means that the code associated with a given procedure call is not known until the
time of the call at runtime. It is associated with polymorphism and inheritance. A procedure call
associated with a polymorphic reference depends on the dynamic type of that reference.

Consider the procedure “draw™ in Fig. 1.5. By inheritance, every object will have this procedure, Its
algorithm is, however, unique to each object and so the draw procedure will be redefined in each class
that defines the object. At run-time, the code matching the object under current reference will be
called.

Message Communication

An object-oriented program consists of a set of objects that communicate with each other. The process
of programming in an object-oriented language, therefore, involves the following basic steps:

1. Creating classes that define objects and their behaviour.
2. Creating objects from class definitions.
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the same way as
people pass messages to one another as shown in Fig. 1.6. The concept of message passing makes it
easier to talk about building systems that directly model or simulate their real-world counterparts.

" FigiA8 Network of objects communicating between them

A message for an object is a request for execution of a procedure, and therefore will invoke a
method (procedure) in the receiving object that generates the desired result, as shown in Fig. 1.7.

Message passing involves specifying the name of the object, the name of the method (message) and
the information to be sent. For example, consider the statement
Employee.salary (name);
Here, Employee is the object, salary is the message and name is the parameter that contains
information.
Employee.salary (name);

Object -_[1 I— Information

Message

Objects have a life cycle. They can be created and destroyed. Communication with an object is
feasible as long as it is alive.

Copyrighted material

@ 1.4 Benefits of OOP

OOFP offers several benefits to both the program designer and the user. Object-orientation contributes
to the solution of many problems associated with the development and quality of software products.

The new technology promises greater programmer productivity, better quality of software and lesser
maintenance cost. The principal advantages are:

s Through inheritance, we can eliminate redundant code and extend the use of existing classes.

= We can build programs from the standard working modules that communicate with one another,
rather than having to start writing the code from scratch. This leads to saving of development
time and higher productivity.

* The principle of data hiding helps the programmer to build secure programs that cannot be

invaded by code in other parts of the program.

[t is possible to have multiple objects to coexist without any interference.

It is possible to map objects in the problem domain to those objects in the program.

It is easy to partition the work in a project based on objects.

The data-centered design approach enables us to capture more details of a model in an

implementable form.,

Object-oriented systems can be easily upgraded from small to large systems.

» Message passing techniques for communication between objects make the interface descriptions
with external systems much simpler,

+ Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented system, their importance
depends on the type of the project and the preference of the programmer. There are a number of issues
that need to be tackled to reap some of the benefits stated above. For instance, class libraries must be
available for reuse. The technology is still developing and current products may be superseded quickly.
Strict controls and protocols need to be developed if reuse is not to be compromised.

- A software that is easy to use is hand fo build. Tt is hoped that the object-oriented programming
languages like C++ and Java would help manage this problem.

1.5 Applications of OOP

OOP is one of the programming buzzwords today. There appears to be a great deal of excitement and
interest among software engineers in using OOP. Applications of OOP are beginning to gain
importance in many arcas. The most popular application of object-oriented programming, up to now,
has been in the area of user interface design such as windows. There are hundreds of windowing
systems developed using QOP technigues.

Real-business systems are often much more complex and contain many more objects with
complicated attributes and methods, OOP is useful in this type of applications because it can simplify
a complex problem. The promising areas for application of OOP includes:

& Real-time systems
¢ Simulation and modelling
» Object-oriented databases

Hypertext, hypermedia and expertext

Al and expert systems

MNeural networks and parallel programming
Decision support and office automation systems
CIM/CAD/CAD system

It is believed that the richness of OOP environment will enable the software industry to improve not
only the quality of software systems but also its productivity. Object-oriented technology is certainly
changing the way software engineers think, analyze, design and implement systems today.

r‘;ﬁ 1.6 Summary

Java is an object-oriented language. It enables us not only to organize our program code into logical
units called objects but also to take advantage of encapsulation, inheritance, and polymorphism. In this
chapter, we have introduced the basic concepts of object-oriented programming which include

= Encapsulation,

» Inhentance, and

* Polymorphism
We also discussed briefly the benefits and applications of object-oriented programming approach.

“ Key Terms

Structured Programming, Object-Oriented Paradigm, Class, Object, Method, Abstraction, Elmpuﬂm
Data Hiding, Inheritance, Reusability, Polymorphism, Dynamic Binding.

ReviEw QUESTIONS

kb e—=s

1.1 What do vou think are the major issues facing the software industry today?
1.2 Brefly discuss the software evolution during the period from 1950 1o 1995,
1.3 What is ohject-oriented programming? How is it different from the procedure-oriented programrming?
1.4 How are data and methods organized in an object-oriented program?
1.5 What are the unigue advantages of an objeci-orienied programming paradigm?
1.6 Dhistinguish between the following terms:
(a) Objects and classes
(b} Data abstraction and data encapsulation
(¢} Inheritance and polymorphism
(d) Dynamic binding and message passing
1.7 What kinds of things can become objects in OOP?
1.8 Describe inheritance as applied to OOF.
1.9 List a few areas of application of OOP technology.
.10 State whether the following statements are TRUE or FALSE
{a) In conventional, procedure-onented programming, all data are shared by all functions.
(b} The main emphasis of procedure-oriented programming is on algorithms rather than on data.

10

{e) One of the striking features of object-oriented programming is the division of programs into objects
that represent real-world entities,
(d) Wrapping up of data of different types into a single unit is known as encapsulation.
(e} Ome problem with OOP iz that once a class is created, it can never be changed.
(f) Inheritance means the ability to reuse the data values of one object by other objects.
{g) Polymorphism is extensively used in implementing inheritance.
(h)} Object-oniented programs are executed much faster than conventional programs.
(i) Object-oriented systems can scale up better from small to large.
(j) Objeci-onented approach cannot be used 1o create databases,

Java Evolution

2.1 Java History

Java is a general-purpose, object-onented programming language developed by Sun Microsystems of
USA in 199]. Oniginally called Oak by James Gosling, one of the inventors of the language, Java was
designed for the development of software for consumer electronic devices like TVs, VCRs, toasters
and such other electronic machines. The goal had a strong impact on the development team to make the
language simple, portable and highly reliable. The Java team which included Patrick Naughton
discovered that the existing languages like C and C+ + had limitations in terms of both reliability and
portability. However, they modelled their new language Java on C and C++ but removed a number of
features of C and C++ that were considered as sources of problems and thus made Java a really simple,
reliable, portable, and powerful language. Table 2.1 lists some important milestones in the development
of Java.

1990 Sun Microsystems decided to develop special software that could be used to manipulate consumer
electronic devices. A team of Sun Microsystems programmers headed by James Gosling was formed to
undertake this task. _

1991 Afier exploning the possibility of using the most popular object-oriented language C++, the team
announced a new language named “Oak™.

1992 The team, known as Green Project team by Sun, demonstrated the application of their new language to
control a list of home appliances using a hand-held device with a tiny touch-sensitive screen.

{Continued)

Table 2.1 (Continued)
Year Development

1993 The World Wide Web (WWW) appeared on the Internet and transformed the text-based Internet into a
graphical-rich environment, The Green Project team came up with the idea of developing Web applets
(tiny programs) using the new language that could run on all types of computers connected 1o Internet.

1994 The team developed a Web browser called “HotJava™ to locate and run applet programs on Internet.
Hotlava demonstrated the power of the new language, thus making it instantly popular among the
Internet wsers.

1995 Ok was renamed “Java™, due to some legal snags. Java is just a name and is not an acronym. Many
popular companies including Netscape and Microsoft announced their support to Java.

1996 Java established itzelf not only as a leader for Intemel programming but also as a general-purpose,
object-onented programming language. Sun releases Java Development Kit 1.0,

1 9T Sun releases Java Development Kit 1.1 (JDK 1.1).

1998 Sun relases the Java 2 with version 1.2 of the Software Development Kit (SDK 1.2).

1999 Sun releases Java 2 Platform, Standard Edition (J25E) and Enterprise Edition (J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J28E with SDK 1.4 was released.

2004 J2SE with JDK 5.0 (instead of JDK 1.5) was released. This is known as J25E 5.0.

The most striking feature of the language is that it is a platform-neurral language. Java is the first

programming language that is not tied to any particular hardware or operating system. Programs
developed in Java can be executed anywhere on any system. We can call Java as a revolutionary
technology because it has brought in a fundamental shift in how we develop and use programs. Nothing
like this has happened to the software industry before.

.

2.2 Java Features

The inventors of Java wanted to design a language which could offer solutions to some of the problems
encountered in modern programming. They wanted the language to be not only reliable, portable and
_ distributed but also simple, compact and interactive. Sun Microsystems officially describes Java with
the following attnbutes:

Java 2 Feahres Additional Features of J2SE 5.0
* Compiled and Imerpreted * Ease of Development

+ Platform-Independent and Portable & Scalability and Performance

» Object-Oriented » Monitoring and Manageability

¢ Robust and Secure s Deskiop Client

* [hstmbuted o Core XML Support

Familiar, Simple and Small s Supplementary character support
* Multithreaded and Interactive » JDBC RowSet

High Performance

o [Dynamic and Extensible

~ Java Evolution 13

Although the above appears to be a list of buzzwords, they aptly describe the full potential of the
language. These features have made Java the first application language of the World Wide Web. Java
will also become the premier language for general purpose stand-alone applications.

Compiled and Interpreted

Usually a computer language is ¢ither compiled or interpreted. Java combines both these approaches
thus making Java a two-stage system. First, Java compiler translates source code into what is known as
bytecode instructions. Bytecodes are not machine instructions and therefore, in the second stage, Java
interpreter generates machine code that can be directly executed by the machine that is running the
Java program. We can thus say that Java is both a compiled and an interpreted language.

Platform-independent and Portable

The maost sigmficant contribution of Java over other languages is its portability. Java programs can be
easily moved from one computer system to another, anywhere and anyviime, Changes and upgrades in
operating systems, processors and system resources will not force any changes in Java programs. This
15 the reason why Java has become a popular language for programming on Internet which
interconnects different kinds of systems worldwide. We can download a Java applet from a remote
computer onto our local system via Internet and execute it locally. This makes the Internet an extension
of the user’s basic system providing practically unlimited number of accessible applets and
applications.

Java ensures portability in two ways. First, Java compiler generates bytecode instructions that can
be implemented on any machine. Secondly, the size of the primitive data types are machine-
independent.

Object-Oriented

Java is a true object-oriented language. Almost evervthing in Java is an object. All program code and
data reside within objects and classes. Java comes with an extensive set of classes, arranged in
packages, that we can use in our programs by inheritance. The object model in Java is simple and casy
to extend.

Robust and Secure

Java is a robust language. It provides many safeguards 1o ensure reliable code. It has sirict compile time
and run time checking for data types. It is designed as a garbage-collected language relieving the
programmers virtually all memory management problems. Java also incorporates the concept of
exception handling which captures series errors and eliminates any risk of crashing the system.

Security becomes an important issue for a language that is used for programming on Internet. Threat
of viruses and abuse of resources are everywhere. Java systems not only verify all memory access but
also ensure that no viruses are communicated with an applet. The absence of pointers in Java ensures
that programs cannot gain access to memory lecations without proper authorization.

Distributed

Java is designed as a distributed language for creating applications on networks. It has the ability to
share both data and programs. Java applications can open and access remote objects on Internet as
easily as they can do in a local system. This enables multiple programmers at multiple remote locations
to collaborate and work together on a single project.

14 Programming with Java: A Primer
Simple, Small and Familiar

Java is a small and simple language. Many features of C and C+ + that are either redundant or sources
of unreliable code are not part of Java. For example, Java does not use pointers, preprocessor header
files, goto statement and many others. It also eliminates operator overloading and multiple inheritance.
For more detailed comparison of Java with C and C++, refer to Section 2.3,

Familiarity is another striking feature of Java. To make the language look familiar to the existing
programmers, it was modelled on C and C++ languages. Java uses many constructs of C and C++ and
therefore, Java code “looks like a C++" code. In fact, Java is a simplified version of C++.

Multithreaded and Interactive

Multithreaded means handling multiple tasks simultaneously. Java supports multithreaded programs.
This means that we need not wait for the application to finish one task before beginning another, For
example, we can listen to an audio clip while scrolling a page and at the same fime download an applet
from a distant computer. This feature greatly improves the interactive performance of graphical
applications.

The Java runtime comes with tools that support multiprocess synchronization and construct
smoothly running interactive systems.

High Performance

Java performance is impressive for an interpreted language, mainly due to the use of intermediate
bytecode. According to Sun, Java speed is comparable to the native C/C++. Java architecture is also
designed to reduce overheads during runtime. Further, the incorporation of multireading enhances the
overall execution speed of Java programs.

Dynamic and Extensible

Java is a dynamic language. Java is capable of dynamically linking in new class libranes, methods, and
objects. Java can also determine the type of class through a gquery, making it possible to either
dynamically link or abort the program, depending on the response.

Java programs support functions written in other languages such as C and C++, These functions are
known as native methods. This facility enables the programmers to use the efficient functions available
in these languages. Native methods are linked dynamically at runtime.

Ease of Development

Java 2 Standard Edition (J25E) 5.0 supports features, such as Generics, Enhanced for Loop,
Autoboxing or unboxing, Typesafe Enums, Varargs, Static import and Annotation. These features
reduce the work of the programmer by shifting the responsibility of creating the reusable code to the
compiler. The resulting source code is free from bugs because the errors made by the compiler are less
when compared to those made by programmers. Thus, each of the linguistic features is designed to
develop Java programs in an easier way.

Scalability and Performance

J2SE 5.0 assures a significant increase in scalability and performance by improving the startup time
and reducing the amount of memory used in Java 2 runtime environment. For example, the introduction

of the class, data sharing in the Hotspot Java Virtwal Machine (JVM) improves the startup time by
loading the core classes from the jar files into a shared archive. Memory utilization is reduced by
sharing data in the shared archive among multiple JVM processes. In the earlier versions, the data was
replicated in each JVM instance.

Monitoring and Manageability

Java supports a number of APIs, such as JVM Monitoring and Management APl, Sun Management
Platform Extension, Logging, Monitoring and Management Interface, and Java Management
Extension (JMX) to monitor and manage Java applications. For example, Java provides JVM
Monitoring and Management API to track the information at the application level and JVM level when
deploying a large application. Java provides tools, such as jconsole, jps, jstat, and jstatd to make use of
monitoring and management facilities. For example, GUI based tool called jeonsole is used to monitor
the J¥'M.

Desktop Client

J2SE 5.0 provides enhanced features to meet the requirements and challenges of the Java desktop
users. It provides an improved Swing look and feel called Ocean. This feature is mainly used for

developing graphics applications that require OpenGL hardware acceleration.

Miscellaneous Features
In addition to the above features, J28E 5.0 supports the features such as:

Core XML Support JISE 5.0 adds a powerful XML feature to the Java platform. Java contains
some special packages for interface, to instantiate Simple APl for XML (SAX) and Document Object
Maodel (DOM) parsers to parse an XML document, transform the content of an XML document, and
validate an XML document against the schema.

Supplementary Character Support Java adds the 32-bit supplementary character support as
part of the Unicode 4.0 support. The supplementary characters are encoded with UTF-16 values to
generate a different character called, surrogate codepoint,

JDBC RowSet Java supporis JDBC RowSet to send data in a tabular format between the remaote
components of a distributed enterprise application. JDBC RowSet contains CachedRowSet and
WebRowSet objects. The CachedRowSet object is a JavaBean component which acts like a container.
This object contains a number of rows of data, which are retrieved from the database. The data stored
in the CachedRowSet can be directly accessed without connecting to the database or any other data
source. The rows of data that are rerrieved from the database can be synchronmized later. The

WebRowSet object can operate without being connected to the database or data source. The
WebRowSet object uses XML format to read and write the rowset.

@ 2.3 How Java Differs from C and C++

Although Java was modelled after C and C++ languages, it differs from C and C++ in many ways.
Java does not incorporate a number of features available in C and C++. For the benefit of C and C++

programmers, we point out here a few major differences between C/C++ and Java languages.

Java and C

Java 15 a lot like C but the major difference between Java and C is that Java 18 an olyect-oriented

language and has mechamsm to define classes and objects. In an effort to build a simple and safe
language, the Java team did not include some of the C features in Java.

Java does not include the C umque statement keywords sizeof, and tyvpedel.

Java does not contain the data types struct and union.

Java does not define the type modifiers keywords aute, extern, register, signed, and unsigned.

Java does not support an explicit pointer type.

Java does not have a preprocessor and therefore we cannot use # define, # incluode, and # ifdefl

statements.

o Java requires that the functions with no arguments must be declared with empty parenthesis and
not with the veid keyword as done in C.

Java adds new operators such as instanceof and ===,

» Java adds labelled break and continue statements.

Java adds many features required for object-oriented programming.

Java and C++

Java is a true object-onented language while C++ is basically C with object-oriented extension. That is
what exactly the increment operator + + indicates. C++ has maintained backward compatibility with C.
It is therefore possible to write an old style C program and run it successfully under C++. Java appears
to be similar 1o C++ when we consider only the “extension™ panrt of C++, However, some object-
oriented features of C++ make the C++ code extremely difficult to follow and maintain.

Listed below are some major C+ + features that were intentionally omitted from Java or significantly
maodified.

Java does not support operator overloading.

Java does not have template classes as in C++,

* Java does not support multiple inheritance of classes. This 15 accomphished using a new feature
called “interface™.

Java does not support global variables. Every variable and method is declared within a class and
forms part of that class.

Java does not use pointers.

s Java has replaced the destructor function with a finalize{) function.

* There are no header files in Java,

Java also adds some new features, While C++ is a superset of C, Java is neither a superset nor a
subset of C or C++. Java may be considered as a first cousin of C++ and a second cousin of C as
illustrated in Fig. 2.1. A more detailed discussion on the differences between C++ and Java is available
in Appendix C. '

17

JEVE

SFGIZY Overlapping of C. C++, and Java

L
e

Lo

2.4 Java and Internet

Java is strongly associated with the Intermet because of the fact that the first application program
written in Java was HotJava, a Web browser to run applets on Internet. Internet users can use Java to
create applet programs and run them locally using a “Java-enabled browser” such as Hotlava. They
can also use a Java-enabled browser to download an applet located on a computer anywhere in the
Internet and run it on his local computer (see Fig. 2.2). In fact, Java applets have made the Internet a
true extension of the storage system of the local computer.

ﬁm Downloading of applets via Intermet

Copyrighted maierial

18

Internet users can also set up their Web sites containing Java applets that could be used by other
remote users of Internet. The ability of Java applets to hitch a nde on the Information Superhighway
has made Java a unique programming language for the Internet. In fact, due to this, Java is popularly
known as Internet language.

g 2.5 Java and World Wide Web

World Wide Web (WWW) 15 an open-ended information retrieval system designed to be used in the
Internet’s distributed environment. This system contains what are known as Web pages that provide
both information and controls. Unlike a menu-driven system where we are guided through a particular
direction using a decision tree structure, the Web system is open-ended and we can navigate to a new
document in any direction as shown in Fig. 2.3. This is made possible with the help of a language
called Hypertext Markup Language (HTML). Web pages contain HTML tags that enable us to find,
retrieve, manipulate and display documents worldwide.

" Figi23' Web structure of information search

Java was meant to be used in distributed environments such as Intemet. Since, both the Web and
Java share the same philosophy, Java could be easily incorporated into the Web system. Before Java,
the World Wide Web was limited to the display of still images and texts. However, the incorporation of
Java into Web pages has made it capable of supporting animation, graphics, games, and a wide range of
special effecis. With the support of Java, the Web has become more interactive and dynamic. On the
other hand, with the support of Web, we can run a Java program on someone else’s computer across the
Internet.

Java communicates with a Web page through a special tag called <APPLET=. Figure 2.4 illustrates
this process. The figure shows the following communication steps:

1. The user sends a request for an HTML document to the remote computer s Web server. The Web
server 15 a program that accepts a requesl, processes the request, and sends the required
document.

2. The HTML document is returned to the user’s browser. The document contains the APPLET
tag, which identifies the applet.

Copyrighted material

dov Evaton 1

3. The corresponding applet bytecode is transferred to the user’s computer. This bytecode had been
previously created by the Java compiler using the Java source code file for that applet.

4. The Java-enabled browser on the user’s computer interprets the bytecodes and provides output,

5. The user may have further interaction with the applet but with no further downloading from the
provider’s Web server. This is because the bytecode contains all the information necessary to

interpret the applet.
User's Compatar Ramaote Computar
Byiecode plet Source]
Bt] Gode

: --_-""'--,____ I -
Java h k

Wb "‘\\ HTML [Bytecode
Browser o Diocunment kil

. |
\\ - b
.\-\-h — — e — AT T .-
H'\-
. |_ Applet Tag | |
k \\ |
Request !
HTML Documesnt {
, {
W, . - |
x ‘
- |
Dutput Wl Sarver |
| [
USER]
L% -

fm: Java's interaction with the wab

% 2.6 Web Browsers

As pointed out earlier, the Internet is a vast sea of information represented in many formats and stored
on many computers. A large portion of the Internet is organized as the World Wide Web which uses
hypertext. Web browsers are used to navigate through the information found on the net. They allow us
to retrieve the information spread across the Internet and display it using the hypertext markup language
(HTML). Examples of Web browsers, among others, include:

* Hotlava

» Netscape Navigator

» Internet Explorer

HTML documents and <APPLET> tags are discussed in detail in Chapter 14.

Copyrighted material

- R b

HotJava

HotJava is the Web browser from Sun Microsystems that enables the display of interactive content on
the Web, using the Java language. HotJava is written entirely in Java and demonstrates the capabilities
of the Java programming language.

When the Java language was first developed and ported to the Internet, no browsers were available
that could run Java applets. Although we can view a Web page that includes Java applets with a regular
browser, we will not gain any of Java’s benefits. HotJava is currently available for the SPARC/Solaris
platform as well as Windows 95, Windows NT and Windows XP. So far as being a Web browser goes,
it 15 nothing special and does not offer anything special that most other Web browsers don't offer. Its
biggest draw is that it was the first Web browser to provide support for the Java language, thus making
the Web more dynamic and interactive.

Netscape Navigator

Netscape Navigator, from Netscape Communications Corporation, is a general-purpose browser that
can run Java applets. With versions available for Windows 95, NT, Solans and Apple Macintosh,
Netscape Navigator is one of the most widely used browsers today.

Metscape Navigator has many useful features such as visual display about downloading process and
indication of the number bytes downloaded. It also supports JavaScript, a scripting language used in
HTML documents.

Internet Explorer

Internet Explorer is another popular browser developed by Microsoft for Windows 95, NT and XP
Workstations. Both the Navigator and Explorer use tool bars, icons, menus and dialog boxes for easy
navigation. Explorer uses a just-in-time (JIT) compiler which greatly increases the speed of execution.

g 2.7 Hardware and Software
Requirements

Java is currently supported on Windows 95, Windows NT, Windows XP, Sun Solaris, Macintosh, and
UNIX machines. Though, the programs and examples in this book were tested under Windows 95, the
most popular operating system today, they can be implemented on any of the above systems.

The minimum hardware and software requirements for Windows 95 version of Java are as follows:

* [BM-compatible 486 system * A hard drive

* Minimum of 8 MB memory A CD-ROM drive

* Windows 95 software s A Microsoft-compatible mouse
. .

A Windows-compatible sound card, if necessary

g 2.8 Java Support Systems

It 15 clear from the discussion we had up to now that the operation of Java and Java-enabled browsers

on the Internet requires a variety of support systems. Table 2.2 lists the systems necessary to support
Java for delivering information on the Internet.

PR S TLATY T RN S AT L S A .

Support Svstem Deseriplion

Intermet Connection Local computer should be connected to the Intemnet.

Web Server A program that accepts requests for information and sends the required documents.

Web Browser A program that provides access to WWW and runs Java applets.

HTML A language for creating hypertext for the Web.

APPLET Tag For placing Java applets in HTML document.

Java Code Java code is used for defining Java applets.

Byiecode Compiled Java code that is referred to in the APPLET tag and transferred o the user
computer.

@ 2.9 Java Environment

Java environment includes a large number of development tools and hundreds of classes and methods.
The development tools are part of the system known as Java Development Kit (JDK) and the classes
and methods are part of the Java Standard Library (JSL), also known as the Application Programming
Interface (API).

Java Development Kit

The Java Development Kit comes with a collection of tools that are used for developing and running
Java programs, They include:
= appletviewer (for viewing Java applets)
javac (Java compiler)
java (Java interpreter)
javap (Java disassembler)
javah (for C header files)
o javadoc (for creating HTML documents)
e jdb (Java debugger)

B s r::. BT = " ‘."-.:.1
~=!"-'LE_' A ik e i‘ e A

appletviewer Enables us to run Java applets (without actually using a Java-compatible browser).

Jjava ' Java interpreter, which runs applets and applications by reading and interpreting bytecode files.

javac The Java compiler, which translates Java sourcecode to bytecode files that the interpreter can
understand.

javadoc Creates HTML -format documentation from Java source code files.

javah Produces header files for use with native methods.

javap Java disassembler, which enables us to convert byvtecode files into a program description.

jdb Java debugger, which helps us to find errors in our programs.

Copyrighted material

22 * Pograming win ov: A Priner

The way these tools are applied to build and run application programs is illustrated in Fig. 2.5. To
create a Java program, we need to create a source code file using a text editor. The source code is then
compiled using the Java compiler javac and executed using the Java interpreter java. The Java
debugger jdb is used to find emrors, if any, in the source code. A compiled Java program can be

converted into a source code with the help of Java disassembler javap. We learn more about these tools
as we work through the book.

Taxl Editor

Java
Source javadoc - HFT;L .
Code - e A |

— - e e o

|
evac |

JEVE
Class] - jEvah - Hlfﬁ
Fibe

Fig.-2.5 FProcess of building and running Java application programs

Application Programming Interface

The Java Standard Library (or API) includes hundreds of classes and methods grouped into several
functional packages (see Appendix G). Most commonly used packages are:

s Language Support Package: A collection of classes and methods required for implementing
basic features of Java.
Utilities Package: A collection of classes to provide utility functions such as date and time
functions.
Input/Output Package: A collection of classes required for input/output manipulation.

Networking Package: A collection of classes for communicating with other computers via
Internet.

AWT Package: The Abstract Window Tool Kit package contains classes that implements
platform-independent graphical user interface.
* Applet Package: This includes a set of classes that allows us to create Java applets,

The use of these library classes will become evident when we start developing Java programs.

- =

| e Evolton, 23

210 Summary

In this chapter, we have introduced a brief history of Java and its salient features. Java is a pure object-
oriented language introduced by Sun Microsystems of USA and has a number of characteristics that
make it suitable for Internet programming. We have discussed briefly how Java can be incorporated
into the World Wide Web system with the help of Web browsers.

We have also brought out some of the fundamental differences between Java and C/C++ languages.
Finally, we discussed the environment required and various tools available for implementing Java
programs.

* Key Terms

Olalk, Intermet, World Wide Web, Applets, Package, Platform-neutral, Multithread, Bytecode, Dyvnamic
linking, Native methods, HTML, Web browser, Applet tag, Web server, HotJava, Netscape Navigator,
appletviewer, java, javac, javap, javah, javadoe, jdb.

ReviEw QuEsTIONS

2.1 Why is Java known as platform-neutral language?

22 How is Java more secured than other languages?

2.3 What is multithreading? How does it improve the performance of Java?

2.4 List at least five major differences between C and Java.

2.5 List st least five major C++ features that were intentionally removed from Java.

2.6 How is Java strongly associated with the Internet?

27 What is World Wide Web? What is the contnbution of Java to the World Wide Web?

2.8 What is Hypertext Markup Language? Describe its role in the implementation of Java applets.
29 Describe the various systems required for Internet programming?

2.10 Describe with a flowchart, how various Java tools are used in the application development.

Overview of Java
Language

~
‘g 3.1 Introduction

Java is a general-purpose, object-oriented programming language. We can develop two types of Java
programs:

s Stand-alone applications
* Web applets

They are implemented as shown in Fig. 3.1. Stand-alone applications are programs written in Java
to carry out certain tasks on a stand-alone local computer. In fact, Java can be used to develop programs
for all kinds of apphications, which earlier, were developed using languages like C and C++, As pointed
out earlier, HotJava itself 15 a Java application program. Executing a stand-alone Java program involves
two steps:

. Compiling source code into bytecode using javae compiler

2. Executing the bytecode program using java interpreter.

Applets are small Java programs developed for Internet applications. An applet located on a distant
computer (Server) can be downloaded via Internet and executed on a local computer (Client) using a
Java-capable browser. We can develop applets for doing everything from simple animated graphics to
complex games and utilities. Since applets are embedded in an HTML (Hypertext Markup Language)
document and run inside a Web page, creating and running applets are more complex than creating an
application.

Stand-alone programs can read and write files and perform certmin operations that applets cannot
do. An applet can only run within a Web browser.

Java
Source
1/
‘ E-urnpllﬂ' |
"H
/ T Application
Tg.rp-a - " Typu
- - “H"'-\.
o N
= - ,-f" "HH
."/r Java enabled Jaa
\Wiﬂmwsar _Intnfpralsi’/
.. .'\.__l—.'-__—-[. - -
Cutpud Chutpud I

Fig. 3.1 Two ways of using Java

In this chapter, we shall consider some simple apphication programs, which would demonstrate the
general structure of Java application programs. We shall also discuss here the basic elements of Java
language and steps involved in executing a Java application program. Creation of applets will be
discussed later in Chapter 14.

3.2 Simple Java Program

The best way to leamn a new language is to write a few simple example programs and execute them. We
begin with a very simple program that prints a line of text as output.

Program 3.1 A simple Java program

class SampleOne
{

public static void main (String args[1}

{

}
)

Program 3.1 is perhaps the simplest of all Java programs. Nevertheless, it brings out some salient
features of the language. Let us therefore discuss the program line by line and understand the unique
features that constitute a Java program.

System.out.printin(”Java is better than C++.7)

26 * Programming wit Javs: A Priner
Class Declaration
The first line

class Samplelne

declares a class, which is an object-oriented construct. As stated earlier, Java is a true object-oriented
language and therefore, everything must be placed inside a class. class is a keyword and declares that
a new class definition follows. SampleOne is a Java identifier that specifies the name of the class to be
defined.

Opening Brace

Every class definition in Java begins with an opening brace “{" and ends with a matching closing brace
“1", appearing in the last line in the example. This is similar to C++ class construct. (Note that a class
definition in C+ + ends with a semicolon.)

The Main Line
The third line

public static wvoid main (String args[1)
defines a method named main. Conceptually, this is similar to the main() function in C/C++, Every
Java application program must include the main{) method. This is the starting point for the interpreter
to begin the execution of the program. A Java application can have any number of classes but only one
of them must include a main method to initiate the execution. (Note that Java applets will not use the

main method at all.)
This line contains a number of keywords, publie, static and void.

Public: The keyword public 15 an access specifier that declares the main
method as unprotected and therefore making it accessible to _all
other classes. This 15 similar to the C++ public modifier.

Static: Next appears the keyword static. which declares this method as one
that belongs to the entire class and not a part of any objects of
the class. The main must always be declared as static since the
interpreter uses this method before any objects are created. More
about static methods and variables will be discussed later 1in
Chapter 8.

Void: The type modifier woid states that the main method does not return
any wvalue {but simply prints some text to the screen.)

All parameters to a method are declared inside a pair of parentheses. Here, String args| | declares a
parameter named args, which contains an array of objects of the class type String.

The Output Line
The only executable statement in the program is
System.out . printin(Java 1s better than C++_ "):

This is similar to the printf{) statement of C or cout << construct of C++. Since Java is a true object
oriented language, every method must be part of an object. The println method is a member of the out
object, which 15 a static data member of System class. This line prints the string

Java 15 better than C++.

Copyrighted material

 Overview of Jave Language 27

to the screen. The method println always appends a newline character to the end of the string. This
means that any subsequent output will start on a new line. Note the semicolon at the end of the

statement. Every Java statement must end with a semicolon. (Saving, compiling, and executing a Java
program are discussed in Section 3.8)

% 3.3 More of Java

Assume that we would like to compute and print the square root of a number. A Java program to
accomplish this 15 shown in Program 3.2. This is a slightly complex program. This program when
compiled and run produces the output

y = 223607
Program 3.2 A Java program with multiple statements

l."t

* More Java statements

* This code computes sguare root
o |

import java.lang.Math:

class SquareRoot

public static void main{String args[1)

{ double x = & : f/ Declaration and initialization
double y: ff Simple declaration
y = Math, sqrtix}

} system.out. printin{®y = ° + y):

The structure of the program is similar to the previous one except that it has more number of
statements. The statement

double » = 5
declares a variable x and initializes it to the value 5 and the statement
double y;

merely declares a variable y. Note that both of them have been declared as double type variables.
(double is a data type used to represent a floating point number. Data types are discussed in the next
chapter).

The statement
y = Math.sqrti{x):

invokes the method sqrt of the Math class, computes square root of x and then assigns the result to the
vanable y. The output statement

system.out.printin{y =" + y}:

displays the result on the screen as
y = 2.23607

= " PIOUG WR f Friner

Note the use of + symbol. Here, the + acts as the concatenation operator of two strings. The value of ¥
is converted into a string representation before concatenation.

Use of Math Functions

Note that the first statement in the program is
import java.lang.Math:
The purpose of this statement 15 to instruct the interpreter o load the Math class from the package
lang. (This statemnent is similar to #include statement in C.) Remember, Math class contains the sqrt
method required in the program.

Comments

Java permits both the single-line comments and multi-line comments available in C++. The single-line
comments begin with // and end at the end of the line as shown on the lines declaring x and y. For
longer comments, we can create long multi-line comments by starting with a /* and ending with a */ as
shown at the beginning of the program.

y

3.4 An Application with Two Classes

Both the examples discussed above use only one class that contains the main method. A real-life

application will generally require multiple classes. Program 3.3 illustrates a Java application with two
classes,

Program 3.3 A program with multiple classes

class Room

{
float length:

float breadth;
void getdata(float a, float b)

length = a:
breadth = b;:
}
}
class RoomArea
{
public static void main (5tring args[1}
{
float area:
Room rooml = new Room(}; // Creates an object rooml
rooml _getdata(ld. 10): /f Assigns wvalues to length and breadth
area = rooml.length * rooml. breadth:
System,.out.printin ("Area =" + area):
}

Copyrighted material

29

Program 3.3 defines two classes Room and RoomArea. The Room class defines two variables and
one method to assign values to these variables. The class RoomArea contains the main method that
initiates the execution,

The main method declares a local variable area and a Room type object room1 and then assigns
values to the data members of Room class by using the getdata method. Finally, it calculates the area
and prints the results. Note the use of dot operator to access the variables and methods of Room class.
Classes and methods are discussed in Chapter 8. The use of the keyword new is explained later in this

Chapter.

iy

3.5 Java Program Structure

As we have seen in the previous examples, a Java program may contain many classes of which only
one class defines a main method. Classes contain data members and methods that operate on the data
members of the class, Methods may contain data type declarations and executable statements. To write
a Java program, we first define classes and then put them together. A Java program may contain one or
more sections as shown in Fig. 3.2

Documentation Section Suggested
Package Statement - Optional
[mport Statements Optional

i Interface Statements Optional

|

{ Class Definitions : Optional

Main Method Class

{

Main Method Definition
y - Essential

Figi32: General structure of a Java program

Documentation Section

The documentation section comprises a set of comment lines giving the name of the program, the
author and other details, which the programmer would like to refer to at a later stage. Comments must
explain why and whar of classes and how of algorithms. This would greatly help in maintaining the

30 Programming with Java: A Primer

program. In addition to the two styles of comments discussed earlier, Java also uses a third style of
comment **....* known as documentation comment. This form of comment 15 used for generating
documentation automatically.

Package Statement

The first statement allowed in a Java file is a package statement. This statement declares a package
name and informs the compiler that the classes defined here belong to this package. Example:
package student;

The package statement is optional. That is, our classes do not have to be part of package. More about
packages will be discussed in Chapter 11.

Import Statements

The next thing after a package statement (but before any class definitions) may be a number of import
statements. This is similar to the #include statement in C. Example:

import student. test:

This statement instructs the interpreter to load the test class contammed in the package student.
Using import statements, we can have access to classes that are part of other named packages. More on
import statements in Chapter 11.

Interface Statements

An interface is like a class but includes a group of method declarations. This is also an optional section
and 15 used only when we wish to implement the multiple inhentance feature in the program. Interface
15 & new concept in Java and 15 discussed mn detail in Chapter 10.

Class Definitions

A Java program may contain multiple class definitions. Classes are the primary and essential elements
of a Java program. These classes are used to map the objects of real-world problems. The number of
classes used depends on the complexity of the problem.

Main Method Class

Since every Java stand-alone program requires a main method as 115 starting point, this class 15 the
essential part of a Java program. A simple Java program may contain only this part. The main method
creates objects of various classes and establishes communications between them. On reaching the end
of main, the program terminates and the control passes back to the operating system.

g 3.6 Java Tokens

A Java program is basically a collection of classes. A class is defined by a set of declaration statements
and methods containing executable statements (see Fig. 3.3). Most statements contain expressions,
which describe the actions carmied out on data. Smallest individual units in a program are known as
tokens. The compiler recognizes them for building up expressions and statemenis.

Copyrighted material

Tokens
[~;
Declaration statement
E L, Variables
Saction
| Declaration statement
Tokens
Method 1 /
t iﬂﬁf 1 P,ihh;" Statements
Tekiins
Method 2 / Section
o
e gy L..'.,' '

- Fig. 3.3 - Elements of Java class

In simple terms, a Java program is a collection of tokens, comments and white spaces. Java language
includes five types of tokens. They are:
* Reserved Keywords
|dentifiers
« Literals
o Operators
e Separators

Java Character Set

The smallest units of Java language are the characters used to write Java tokens. These characters are
defined by the Unicode character set, an emerging standard that tries to create characters for a large
number of scripts worldwide,

The Unicode is a 16-bit character coding system and currently supports more than 34,000 defined
characters derived from 24 languages from America, Europe, Middle East, Africa and Asia (including
India). However, most of us use only the basic ASCII characters, which include letters, digits and

punctuation marks, used in normal English. We, therefore, have used only ASCII character set (a
subset of UNICODE character set) in developing the programs in this book.

Keywords

Keywords are an essential part of a language definition. They implement specific features of the
language. Java language has reserved 50 words as keywords. Table 3.1 lists these keywords. These
keywords, combined with operators and separators according to a syntax, form definition of the Java
language. Understanding the meanings of all these words is important for Java programmers.

Since keywords have specific meaning in Java, we cannot use them as names for variables, classes,
methods and so on. All keywords are to be written in lower-case letters. Since Java is case-sensitive,
one can use these words as identifiers by changing one or more letters to upper case. However, it is a
bad practice and should be avoided.

R e et
abstract asser

byte case
class COnSI
do double
extends final
for goto
impaort instanceof
long native
private protected
short static
switch synchronized
throws transient
volatile while
Note: We should also not attemipt 1o use the boo] ean values true and false ornul] as names in our programs,
Identifiers

Identifiers are programmer-designed tokens. They are used for naming classes, methods, variables,
objects, labels, packages and interfaces in a program. Java identifiers follow the following rules:
1. They can have alphabets, digits, and the underscore and dollar sign characters.
2. They must not begin with a digit.
3. Uppercase and lowercase letters are distinct.
4. They can be of any length. .
Identifier must be meaningful, short enough to be quickly and easily typed and long enough to be
descriptive and easily read. Java developers have followed some naming conventions.
+ Names of all public methods and instance variables start with a leading lowercase letter.
Examples:
average
aum

Copyrighted material

Overview of Java Language 33

* When more than one words are used in a name, the second and subsequent words are marked
with a leading uppercase letters, Examples:
dayTemperature
firstDayOfMonth
totalMarks

All private and local variables use only lowercase letters combined with underscores. Examples:

length
batch_strength

s All classes and interfaces start with a leading uppercase letter (and each subsequent word with a
leading uppercase letter). Examples:
student
HelloJava
Vehicle
MotorCycle
Variables that represent constant values use all uppercase letters and underscores between words.
Examples:
TOTAL
F_MAX
PRINCIPAL AMOUNT
They are like symbolic constants in C.
It should be remembered that all these are conventions and not rules. We may follow our own
conventions as long as we do not break the basic rules of naming identifiers.

Literals

Literals in Java are a sequence of characters (digits, letters, and other characters) that represent constant
values to be stored in variables. Java language specifies five major types of literals. They are:

Integer literals
Floating_point literals
Character literals
String literals
Boolean literals

Each of them has a type associated with it. The type descnibes how the values behave and how they
are stored. We will discuss these in detail when we deal with data types and constants in the next
chapter.

Operators

An operator is a symbol that takes one or more arguments and operates on them to produce a result.
Operators ar¢ of many types and are considered in detanl in Chapter 5.

Separators

Separators are symbols used to indicate where groups of code are divided and arranged. They basically
define the shape and function of our code. Table 3.2 lists separators and their functions.

Name What it is used for

parentheses () Used to enclose parameters in method definition and invocation, also used for defining precedence
in expressions, containing expressions for flow control, and surrounding cast fypes.

braces { } Used to contain the values of automatically initialized arrays and to define a block of code for
classes, methods and local scopes

brackets [] Used to declare array types and for dereferencing array values

semicolon ; Used to separate statements

COmma , Used to separate consecutive identifiers in a variable declaration, also used to chain statements
together inside a *for” statement

period . Used to separate package names from sub-packages and classes; also used to separate a variable
or method from a reference variable.

g 3.7 Java Statements

The statements in Java are like sentences in natural languages, A stalement 15 an executable
combination of tokens ending with a semicolon { ;) mark. Statements are usually executed in sequence
in the order in which they appear. However, it is possible to control the flow of execution, if necessary,
using special statements. Java implements several types of statements as illustrated in Fig. 3.4 and
described in Table 3.3. They are considered in depth as and when they are encountered.

R A W

Remarks
Empty Statement These do nothing and are wsed during program Same as C and C++
development as a place holder.
Labelled Any Staternent may begin with a label. Such labels Identical to C and C++ except
Statement must not be keywornds, already declared local their use with jump statements
variables or previously used labels in this module.
Labels in Java are used as the arguments of Jump
statements, which are described later in this list.
Expression Most statemenis are expression statements. Same as C++
Statement Jova has seven types of Expression statements:
Assignment, Pre-Increment, Pre-Decrement,
Post-Increment, Post-Decrement, Method Call
and Allocation Expression.
Selection These select one of several control flows. There are ™ Same as C and C++
Statement Three types of selection statements in Java: if, if-else,
and switch.

(Continued)

Copyrighted maierial

35

Table 3.3 (Continued)

Statement Deseription Remarks
Iteration These specify how and when looping will take place. Same as C and C++
Statement There are three types of iteration statements; while, except for jumps and labels
do and for.
Jump Jump Statements pass control to the beginning or end € and C++ do not use labels with
Statement of the current block, or to a labeled statement. Such jump statements

labels must be in the same block, and continue labels
must be on an iteration statement. The four types of
Jump statement are break, continue, return and

throw.
Synchronization These are used for handling issues with Now available in C and C++
Statement multithreading.
Guarding Cuarding statements are used for safe handling of Same as in C++ except finally
Statement code that may cause exceptions (such as division statement.

by zero). These statements use the keywords try,

catch, and finally,

gﬁ 3.8 Implementing a Java Program

Implementation of a Java application program involves a series of steps. They include:

» Creating the program
» Compiling the program
Running the program

Remember that, before we begin creating the program, the Java Development Kat (JDK) must be
properly installed on our system.

Creating the Program

We can create a program using any text editor. Assume that we have entered the following program:

Program 3.4 Another simple program for testing

class Test

{

public static void main (String args[1)

{
System.out .printin(“Hellow!"):
System.out.printin{"Welcome to the world of Java."):
System_out _printin(“Let us Tearn Java.):

—— ™ = -

" Figi84. Classification of Java statements

We must save this program in a file called Test.java ensuring that the filename contains the class
name properly. This file is called the source file. Note that all Java source files will have the extension
hmHnulhﬁuﬁlmmmhpknhmhﬁhmmﬂhhumufh
class containing the main method.

Copyrighted material

v of sava Language. 57
Compiling the Program
To compile the program, we must run the Java Compiler javae, with the name of the source file on the
command line as shown below:
Javac Test. java

If everything is OK, the javac compiler creates a file called Test.class containing the bytecodes of
the program. Note that the compiler automatically names the bytecode file as

<classname> .class

m Implementation of Java programs

Running the Program

We need to use the Java interpreter to run a stand-alone program. At the command prompt, type
java Test

Now, the interpreter looks for the main method in the program and begins execution from there.
When executed, our program displays the following:

Copyrighted material

38 -.w o0 H*l'-‘g#ﬂh‘lr-
Hello!
Welcome to the world of Java.
Let us Tearn Java.

Mote that we simply type “Test™ at the command line and not “Test.class™ or “Test java™.
Machine Neutral

The compiler converts the source code files into bytecode files. These codes are machine-independent
and therefore can be run on any machine. That is, a program compiled on an IBM machine will run on
a Macintosh machine,

Java interpreter reads the bytecode files and translates them into machine code for the specific
machine on which the Java program is running. The interpreter is therefore specially written for each
type of machine. Figure 3.5 illustrates this concept.

el

3.9 Java Virtual Machine

All language compilers translate source code into machine code for a specific computer. Java compiler
also does the same thing. Then, how does Java achieve architecture neutrality? The answer is that the
Java compler produces an intermedia code known as bytecode for a machine that does not exist. This
machine is called the Java Firtual Machine and it exists only inside the computer memory. It is a
simulated computer within the computer and does all major functions of a real computer. Figure 3.6

illustrates the process of compiling a Java program into bytecode which is also referred to as virtual
machine code,

Java Java Wirbual
Program) Compiler - Machine
Source Gode Bytecode

Fig.36. Frocess of compilation

The virtual machine code is not machine specific. The machine specific code (known as machine
code) is generated by the Java interpreter by acting as an intermediary between the virtual machine and
the real machine as shown in Fig. 3.7. Remember that the interpreter 15 different for different machines.

_ Java Machinee
Bylecoda Interpreter Code
Wirtual Machine Real Blachine

Fig3T . Process of converting bytecode into machine code

Figure 3.8 illustrates how Java works on a typical computer. The Java object framework (Java API)
acts as the intermediary between the user programs and the virtual machine which in turn acts as the
mtermediary between the operating system and the Java object framework.

39

Raal Maching

Operating System

Java Virtual Machine

Java Obpect Framewors [AF])

@&

5 m Layers of interactions for Java programs

310 Command Line Arguments

There may be occasions when we may like our program to act in a particular way depending on the
input provided at the time of execution. This is achieved in Java programs by using what are known as
command line arguments. Command line arguments are parameters that are supplied to the application
program at the time of invoking it for execution. [t may be recalled that Program 3.4 was invoked for
execution of the command line as follows:

java Test

Here, we have not supplied any command line arguments. Even if we supply arguments, the program
does not know what to do with them.

We can write Java programs that can receive and use the arguments provided in the command line.
Recall the signature of the main() method used in our earlier example programs:

public static void main (String args[1)

As pointed out earlier, args is declared as an array of strings (known as string objects). Any
arguments provided in the command line (at the time of execution) are passed to the array args as its
elements. We can simply access the array elements and use them in the program as we wish. For
example, consider the command line

java Test BASIC FORTRAN C++ Java

Copyrighted material

This command line contains four arguments. These are assigned to the array args as follows:
BASIC — args [0]
FORTRAN ——— args [1]
C++ — args [2]
Java — args [3]

The individual elements of an array are accessed by using an index or subscript like args| i |. The
value of 1 denotes the position of the elements inside the amay. For example, args| 2 | denotes the third
element and represents C++. Note that Java subscripis begin with 0 and not 1. (Arrays and sirings are
discussed in detail in Chapter 9.)

Program 3.5 Use of command line arguments

f*&

* This program uses command 1ine
* arguments as input.

*f

Class ComLineTest

public static void main (String args[1)
{
int count. i=0:
String string:
count = args.length;
System.out.printin{”Number of arguments = " + count);:
while (1 < count)
{
string = args[i]:
i =1+ 1;
System.out.printin(i+ ° :© 7 + “Java 18~ + string+ "!7};

Program 3.5 illustrates the use of command line arguments. Compile and run the program with the
command line as follows:
java ComLineTest S5Simple Object Oriented Distributed Robust
Secure Portable Multithreaded Oynamic
Upon execution, the command line arguments Simple, Object Oriented, etc. are passed to the
program through the array args as discussed earlier. That is the element args| 0 | contains Simple,
args| 1 | contains Object Ornented, and so on. These elements are accessed using the loop variable i as
an index like
name = args[i]
The index i is incremented using a while loop until all the arguments are accessed. The number of
arguments is obtained by statement
count = args.length:

Overview of Java Language 41
The output of the program would be as follows:
Number nf arguments = 8
» Java 1s Simple!
: Java 15 Object Oriented!
: Java is Distributed!
. Java 15 Robust!
. Java 15 Secure!
. Java is Portable!
: Java 15 Multithreaded!
» Java is Dynamic!

MNote hclw the output statement concatenates the strings while printing.

o = O N e fed PO

g 3.11 Programming Style

Java is a freeform language. We need not have to indent any lines to make the program work properly.
Java system does not care where on the line we begin typing. While this may be a license for bad
programming, we should try to use this fact to our advantage for producing readable programs.
Although several alternate styles are possible, we should select one and try to use it with total

Cconsistency.
For example, the statement
System.out.printin(~Java is Wonderful!™)
can be writien as
System.out . printin
("Java is Wonderful!™);
0T, €VEn as
system
out
printin
(
“Java is Wonderful!”
Ik
In this book, we follow the format used in the example programs of this chapter.

B 3.12 Summary

Java is a general-purpose, object-oriented language. In this chapter, we have discussed some simple
application programs to familianze the readers with basic Java structure and syntax. We have also
discussed the basic elements of the Java language and steps involved in creating and executing a Java
appheation program.

il
32
33
34
33
6
A7
KR
9

Describe the structure of a typical Java program.

Why do we need the import statement?

What is the task of the main method in a Java program?

What is a token? List the various types of tokens supported by Java.

Why can’t we use a keyword as a variable name?

Enumerate the rules for creating identifiers in Java.

What are the conventions followed in Java for naming identifiers? Give examples.
What are separators? Describe the various separators used in Java.

What is a statement? How do the Java statements differ from those of C and C++7

3,10 Describe in detail the steps involved in implementing a stand-alone program.
311 What are command line arguments? How are they useful?
3.12 Java is freeform language. Comment.

Copyrighted material

Constants, Variables,
and Data Types

4.1 Introduction

A programming language is designed to process certain kinds of dara consisting of numbers, characters
and strings and to provide useful output known as information. The task of processing data is
accomplished by executing a sequence of instructions constituting a program. These instructions are
formed using certain symbols and words according to some rigid rules known as symtax rules (or
grammar). Every program instruction must conform precisely to the syntax rules of the language.

Like any other language, Java has its own vocabulary and grammar. In this chapter, we will discuss
the concepts of constants and variables and their types as they relate to Java language.

g 4.2 Constants

Constants in Java refer to fixed values that do not change during the execution of a program. Java
supports several types of constants as illustrated in Fig. 4.1.

Integer Constants

An integer constant refers to a sequence of digits, There are three types of integers, namely, decimal
integer, actal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional minus sign. Vahd
examples of decimal integer constants are:

123 -321 0 b54321

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,
15 750 20,000 $1000
are illegal numbers,

JAne COMSTANTS
Mumeric Constants Character Constants
Integer Real Character Siring
Constants Constants Constants Constants

_Fig. 4.1 Java constants

An octal integer constant consists of any combination of digits from the set 0 through 7, with a
leading 0. Some examples of octal integer are:

037 0 0435 0551
A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer (hex integer). They
may also include alphabets A through F or a through {. A letter A through F represents the numbers 10
through 15. Following are the examples of valid hex integers.

oxe 0X9F Oxbcd 0x
We rarely use octal and hexadecimal numbers in programming.
Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,
heights, temperatures, prices, and so on. These quantities are represented by numbers containing
fractional parts like 17.548. Such numbers are called real (or floating poinf) constants. Further
examples of real constants are:

0.0083 -0,75 43516
These numbers are shown in decimal rotation, having a whole number followed by a decimal point
and the fractional part, which is an integer. It is possible that the number may not have digits before the
decimal point or digits after the decimal point. That is,
215, o5 =71
are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value
215.65 may be written as 2.1565¢2 in exponential notation. €2 means multiply by 107, The general
form is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is an
integer with an optional plus or minus sign. The letter e separating the mantissa and the exponent can

be written in either lowercase or uppercase. Since the exponent causes the decimal point to “float”, this
notation is said to represent a real number in floating point form. Examples of legal floating point
constants are:

0.65e4 12e-2 1.5e +5 J.IBE3} -1.2E-1

Embedded white (blank) space 15 not allowed, in any numenc constant.
Exponential notation is useful for representing numbers that are either very large or very small in

magnitude. For example, 7500000000 may be wntten as 7.5E9 or 75ER. Similarly, —0.000000368 15
equivalent to —3.68E-7,

A floating point constant may thus comprise four parts:

3 whole number
* a decimal point
a fractional part
* an exponent

Single Character Constants

A single character constant (or simply character constant) contains a single character enclosed within
a pair of single quote marks. Examples of character constants are:

is'l txb l:" [T

Note that the character constant *3° is not the same as the number 5. The last constant is a blank

space.
String Constants
A string constant is a sequence of characters enclosed between double quotes. The characters may be
alphabets, digits, special characters and blank spaces. Examples are:

“Hello Java™ “1997" “WELL DONE" =217 “5+3" X

Backslash Character Constants

Java supports some special backslash character constants that are used in output methods. For example,
the symbol “n’ stands for newline character. A list of such backslash character constants is given in
Table 4.1. Note that each one of them represents one character, although they consist of two characters.
These characters combmations are known as escape sequences.

[P ——

Cansiant Meaning
Ab° back space
NS form feed
“An’ new line
et carriage rehum
Y honzontal tab
B single quote

L double quote

RN backslash

46 PO WA e A Frimar

4.3 Variables

A variable 15 an identifier that denotes a storage location used to store a data value. Unlike constants
that remain unchanged during the execution of a program, a variable may take different values at
different times during the execution of the program, In Chapter 3, we had used several vanables. For
instance, we used variables length and breadth to store the values of length and breadth of a room.
A variable name can be chosen by the programmer in a meaningful way so as to reflect what it
represents in the program. Some examples of variable names are:
* average
» height
e total_height
* classStrength
As mentioned earlier, variable names may consist of alphabets, digits, the underscore{) and dollar
characters, subject to the following conditions:
1. They must not begin with a digit.
2. Uppercase and lowercase are distinct. This means that the vanable Total is not the same as total
or TOTAL.
3. It should not be a keyword.
4. White space is not allowed,
5. Vanable names can be of any length.

g 4.4 Data Types

Every vaniable in Java has a data type. Data types specify the size and type of values that can be stored.
Java language is rich in its data fypes. The variety of data types available allow the programmer to
select the type appropriate to the needs of the application. Data types in Java under vanous categories
are shown in Fig. 4.2. Primitive types (also called inirinsic or buili-in types) are discussed in detail in

DATA TYPES IN JAVA

l

| !
Brimative e -Prisnifive
{Inbrinusic) (Derived)
. I
S S T i
Numeric | | Mon-numeric | Classes I Arrays
1 |
§ ' 1 s

" Fig.4.2 ' Data types in Java

Constants Vaies waData Tpes a

this chapter. Derived types (also known as reference types) are discussed later as and when they are
encountered.

Integer Types

Integer types can hold whole numbers such as 123, -96, and 5639. The size of the values that can be
stored depends on the integer data type we choose. Java supports four types of integers as shown in

Fig. 4.3. They arc byte, short, int, and long. Java does not support the concept of unsigned types and
therefore all Java values are signed meaning they can be positive or negative, Table 4.3 shows the
memory size and range of all the four integer data

R R -

Tipe Size Minimum value H.qum value

byte One byte 128 127

short Two bytes ~32, 768 32, 767

int Four bytes -2, 147, 483, 648 2, 147, 483, 647

long Eight bytes -9, 223, 372, 036, 854, 775, BOR 9, 223, 372, 036, B34, 775, 807

It should be remembered that wider data types require more time for manipulation and therefore it is
advisable to use smaller data types, wherever possible. For example, instead of storing a number like
50 in an int type variable, we must use a byte variable to handle this number. This will improve the
speed of execution of the program.

We can make integers long by appending the letter L or | at the end of the number. Example:

123L or 1231

Floating Point Types

Integer types can hold only whole numbers and therefore we use another type known as floating point
type to hold numbers containing fractional parts such as 27.59 and —1.375 (known as floating point
constants). There are two kinds of floating point storage in Java as shown in Fig. 4.4,
The Noat type values are single-precision numbers while the double types represent double-
precision numbers. Table 4.4 gives the size and range of these two types.
Floating point numbers are treated as double-precision quantities. To force them to be in single-
precision mode, we must append { or F to the numbers, Example:
1.23fF
7.56923e5F

Tipe Size Minimm value Maximum value
float 4 bytes 3.4e-038 3. 4e+D38
double 8 bytes 1.7e-308 1.7e+ 308

-Fig- 44 Floating point dala types

Dwouble-precision types are used when we need greater precision in storage of floating point
numbers. All mathematical functions, such as sin, cos and sgri return double type values.

Floating point data types support a special value known as Not-a-Number (NaN). NaN is used to
represent the result of operations such as dividing zero by zero, where an actual number is not
produced. Most operations that have NaN as an operand will produce NaN as a result.

Character Type

In order to store character constants in memory, Java provides a character data type called char. The
char type assumes a size of 2 bytes but, basically, it can hold only a single character,

Boolean Type

Boolean type is used when we want to test a particular condition during the execution of the program.
There are only two values that a boolean type can take: true or false. Boolean type is denoted by the
keyword boolean and uses only one bit of storage.

All comparison operators (see Chapter 5) return boolean type values. Boolean values are often used
in selection and iteration statements. The words true and false cannot be used as identifiers.

4.5 Declaration of Variables

In Java, variables are the names of storage locations. After designing suitable variable names, we must
- declare them to the compiler. Declaration does three things:

1. Tt tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

3. The place of declaration (in the program) decides the scope of the vanable.
A variable must be declared before it is used in the program.

A variable can be used to store a value of any data type. That 1s, the name has nothing to do with the

type. Java allows any properly formed vanable to have any declared data type. The declaration
statement defines the type of variable. The general form of declaration of a vanable 1s:

St Vol i D s -

type variablel, variable?, variableN:

Variables are separated by commas. A declaration statement must end with a semicolon. Some valid
declarations are:

int count :
float X, ¥:
double pi:

byte b:

char cl. ¢2. c3:

g 4.6 Giving Values to Variables

A variable must be given a value after it has been declared but before it is used in an expression. This
can be achieved in two ways:

1. By using an assignment statement
2. By using a read statement

Assignment Statement
A simple method of giving value to a variable is through the assignment statement as follows:

variableName = value:

For example:
initialValue = 0;
finalValue = 100:
¥es = "x':
We can also siring assignment expressions as shown below:
X =y =7 =10
It is also possible to assign a value to a variable at the time of its declaration. This takes the form:

type variableName = value:

Examples:
int finalValue = 100 ;
char yEes = txT
double total = 75.36;

The process of giving initial values to variables is known as the initialization. The ones that are not
initialized are automatically set to zero.

The following are valid Java statemenis:

float =x=. y. z: /{ declares three float variables

int m = 5. n = 10: // declares and initialises two int variables

int m, n = 10; /! declares m and n and initialises n

50 Programming witdava: A Frimer
Read Statement

We may also give values to vanables interactively through the keyboard using the readLine() method
as illustrated in Program 4.1.

Program 4.1 Reading data from keyboard
import java.io.DatalnputStream;

class Reading

{
public static woid main{String args[])
{
Datalnputitream in = new DatalnputStream{System.in);
int intNumber = 0:
float floatNumber = 0.0f:
try
{
System.out.printin{“Enter an Integer: ~};
intNumber = Integer.parselnt{in.readLine());
System.out.printin{"Enter a float number: 7);
floatNumber =
Float .valuelf(in.readLine()) .floatValue{);
}
catch (Exception e) {]
System.out.printin{”intNumber = ° + intNumber):
System_out.printini floatNumber = ° + floatNumber):
]
}

The interactive input and output of Program 4.1 are shown below:
Enter an integer:
123
Enter a float number:
123.45
intNumber = 123
floatNumber = 123.45
The readLine() method (which s invoked using an object of the class DatalnputStream) reads
the input from the keyboard as a string which is then converted to the corresponding data type using the
data type wrapper classes. See Chapter 9 for more about wrapper classes.

Mote that we have used the keywords try and catch to handle any errors that might occur during the
reading process. Java requires this. See Chapter 13 for more details on error handling.

Copyrighted material

e ——

4.7 Scope of Variables

Java variables are actually classified into three kinds:

o jmstance variables,
» ¢lass vanables, and
¢ [ocal variables,

Instance and class variables are declared inside a class. Instance variables are created when the
objects are instantiated and therefore they are associated with the objects. They take different values
for each object. On the other hand, class variables are global to a class and belong to the entire set of
objects that class creates. Only one memory location is created for each class variable. Instance and
class variables will be considered in detail in Chapter 8.

Variables declared and used inside methods are called Jocal variables. They are called so because
they are not available for use outside the method definition. Local variables can also be declared inside
program blocks that are defined between an opening brace | and a closing brace }. These vanables are
visible to the program only from the beginning of its program block to the end of the program block.
When the program control leaves a block, all the varniables in the block will cease to exist. The area of
the program where the vanable 15 accessible (1.e., usable) i1s called its scope.

We can have program blocks within other program blocks (called nesting) as shown in Fig. 4.5,

{
lockl
int x = 0: wloc
{ Block?
int n=5;
I }
{ Block3
int m = 10;
1
}

52 Programming with Java: A Primer

Each block can contain its own set of local vanable declarations. We cannot, however, declare a
vanable to have the same name as one in an outer block. In Fig. 4.5, the vanable x declared in Blockl
is available in all the three blocks. However, the variable m declared in Block2 is available only in
Block2, because it goes out of the scope at the end of Block2. Similarly, m is accessible only in Block3.

Mote that we cannot declare the vanable x again in Block2 or Block3 (This is perfectly legal in C
and C++).

B 48 Symbolic Constants

We often use certan unique constants i a program. These constants may appear repeatedly in a number
of places in the program. One example of such a constants is 3.142, representing the value of the
mathematical constant “pi”, Another example is the total number of students whose mark-sheets are
analysed by a “test analysis program’. The number of students, say 50, may be used for calculating the
class total, class average, standard deviation, etc. We face two problems in the subsequent use of such

programs. They are:

1. Problem in modification of the program.
2. Problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations
of the number 50 to 100 o process the test resulis of another class. In both the cases, we will have to
search throughout the program and explicitly change the value of the constant wherever it has been
used. 1f any value is left unchanged, the program may produce disastrous outputs,

Understandability

When a numeric value appears in a program, its use 15 not always clear, especially when the same value
means different things in different places. For example, the number 50 may mean the number of
students at one place and the *pass marks™ at another place of the same program. We may forget what a
certain number meant, when we read the program some days later.

Assignment of a symbolic name to such constants frees us from these problems, For example, we
may use the name STRENGTH to denote the number of students and PASS MARK 1o denote the
pass marks required in a subject. Constant values are assigned to these names at the beginning of the
program. Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect
of causing their defined values to be automatically substituted at the appropriate points. A constant is
declared as follows:

| final type symbolic-name = value;

Valid examples of constant declaration are:

final int STREMGTH = 100:
final 1int PASS MARK = 50;
final float PI = 3.14159:

53

MNote that:

1. Symbolic names take the same form as variable names. But, they are written in CAPITALS to
visually distinguish them from normal variable names. This is only a convention, not a rule.

2. After declaration of symbolic constants, they should not be assigned any other value within the
program by using an assignment statement. For example, STRENGTH = 200; is illegal.

3. Symbolic constants are declared for types. This is not done in C and C++ where symbolic
constants are defined using the # define statement.

4. They can NOT be declared inside a method. They should be used only as class data members in
the beginning of the class.

@ 4.9 Type Casting

We often encounter situations where there is a need to store a value of one type into a variable of
another type. In such situations, we must cast the value to be stored by proceeding it with the type name

in parentheses. The syntax is:

type variablel = (type) variabled;

The process of converting one data type to another is called casting.

Examples:
int m = &0
byte n = (byte)m;

long count = {longlm;

Casting is often necessary when a method returns a type different than the one we require.

Four integer types can be cast to any other type except boolean. Casting into a smaller type may
result in a loss of data. Similarly, the float and double can be cast to any other type except boolean.
Again, casting to smaller type can result in a loss of data. Casting a floating point value to an integer
will result in a loss of the fractional pan. Table 4.5 lists those casts, which are guaranteed to result in no
loss of information.

.) Tablé45 Casts thatResults in No Loss of Information - . .-
To

From
byte short, char, int, long. float. double
chort int, long, float. double
char int. long., float. double
int long. float. double
Tang float, double
float double
Automatic Conversion

For some types, it is possible to assign a value of one type to a variable of a different type without a
cast. Java does the conversion of the assigned value automatically. This is known as aufomatic type

54 Frogremiming with Jave: A Primer
conversion. Automatic fype conversion is possible only if the destination type has enough precession
to store the source value. For example, int is large enough to hold a byte value. Therefore,

byte b = 75:

int a = b:
are valid statements,

The process of assigning a smaller type to a larger one is known as widening or promofion and that

of assigning a larger type to a smaller one is known as narrowing. Note that narrowing may result in
loss of information.

Program 4.2 illustrates the creation of variables of basic types and also shows the effect of type
COnVersions.

Program 4.2 Creation and casting of variables

class TypeWrap
{

public static void main(5tring args[])
{

System.out.printin{"Variables created”):

chart ¢ = "x°;

byte b = &0

short 5 = 1996;

int 1 = 123456789:

long 1 = 1234567654321L;

float f1 = 3. 142F:

flpat & = 1.Zde=5F;

double d2 = 0.000000987,

System.out.printin(® ¢ = " + ¢):

System,out printin(™ b = " + Db):

system.out.printin{™ 5 = " + 5};

System.out.printin(™ 1 = " + 1)
= +

System.out.printin(™ 1 13;

System.out_printin{® fl = = + fl):
System.out _printin(® f2 = 7 + f2);
system.out.printin(®™ d2 = ° + d2);

System.out .printin(™ 7J;

System.out .printin{"Types converted™);
short sl = (shortlb;

short s2 = (shortl)i: // Produces incommect result
float nl = (float)l:

int ml = {int)fl; // Fractional part is lost
system.out.printin{(® (short}b = ° + s51);
system.out.printin{(® (short)i = " + sZ};
System.out _printin{” (flpoat)l = ° + nl);
system.out _printin(™ (int) 1l = ~ + ml);

Copyrighted material

55

o =

Output of Program 4.2 is as follows:
Variables created

cC =X

b = 50

s = 19%

i = 123456789

1 = 1234567654321
fl = 3.142

f2 = 1.2e-005

dz = 9.87e-007

Types converted
{short)b = 50
(short)i = -13035
(float)]l = 1.23457e+012
fint)fl = 3

Note that floating point constants have a default type of double. What happens when we want to
declare a float variable and mnitialize it using a constant? Example:
float x = 7.56;
This will cause the following compaler error;
“Incompatible type for declaration. Explicit cast needed to convert
double to float.”
This should be written as:
float x = 7. 56F:

.

= 410 Getting Values of Variables

A computer program is written to manipulate a given set of data and to display or print the resulis. Java
supports two output methods that can be used to send the results to the screen.

« print() method ff print and wait

« printin() method // printa line and move to next line

The print() method sends information into a buffer. This buffer is not flushed until a newline {or

end-of-line) character is sent. As a result, the print({) method prints output on one line until a newline
character is encountered. For example, the statements

System.out.print (“Hello "}):
System. out . print{~Java!”)}:

will display the words Hello Java! on one line and waits for displaying further information on the same

line. We may force the display to be brought to the next line by printing a newline character as shown
below:

System.out.print ('\n");:
For example, the statements

System.out.print{ “Hello"};
system.out.print(“\n~);
system.out.print{ Java!):

will display the output in two lines as follows:
Hello
Java!

The println{) method, by contrast, takes the information provided and displays it on a line followed

by a line feed(camage-returm). This means that the statements

System.out _printin{ Hello"}:
System.out.printin{ Java!”}:

will produce the following output:
Hello
Java!

The statement
System.out . printin{):

will print a blank line. Program 4.3 illusirates the behaviour of print{) and println{) methods.

Program 4.3 Getting the result to the screen

class Displaying

{
public static void main(String args(])

System.out.printin(Screen Display”™):
for(int 1 = 1, 1 <= 9; i++)

for (int j = 1: j <= i: j++)

System. out, print{® ")
System.out.print(i):

}
System.out.print{~\n~):

} System.out.printin{~Screen Display Done™):
}

Program 4.3 displays the following on the screen:
screen Display

GO DD e O L P a3 PO
OO0 = O LN e D MO
Ll R B R I S

WD 0D = O LN

L= =R =

= R

5
b
7
B
9
]

Screen Display Don

Copyrighted maierial

@ 411 Standard Default Values

In Java, every variable has a default value. If we don't initialize a variable when it is first created, Java
provides default value to that variable type automatically as shown in Table 4.6.

float o.0f

double 0.0d
char null character
boolean false
reference naull

g 412 Summary

This chapter has provided us with a brief description of Java constants and variables and how they are
represented inside the computer. We have also seen how the variables are declared and initialized in

Java.

Converting one type of data to another is often necessary during implementation of a program. We
have discussed how data type conversion is achieved in Java without loss of accuracy.

All programs must read, manipulate and display data. We discussed briefly how values are assigned
to variables and how the results are displayed on the screen. These concepts will be applied for
developing larger programs in the forthcoming chapters.

f“ Key Terms

Data, Information, Syntax, Constants, Variables, Integer, Decimal, Octal, Hexadecimal, Real constants,
Floating point constants, Chamacter constants, Backslash chamcters, Reference types, Boolean, NaN,
Initialization, Scope, Instance variables, Class variables, Local variables, Nesting, Casting, Widening,
Narrowing.

Review QUESTIONS

4.1
4.2
4.3
4.4

What is a constant?

What 15 a vanable?

How are constants and variables imporiant in developing programs?
List the eight basic data types used in Java. Give examples.

Copyrighted material

4.5 What is scope of & variable?

4.6 What is type casting? Why is it required in programming?

4.7 What is initialization? Why is it important?

4.8 When dealing with very small or very large numbers, what steps would you take to improve the accuracy
of the calculations?

4.9 What are symbolic constants? How are they useful in developing programs?

4.10 Which of the following are invalid constants and why?

00,0001 S*1.5 RS 75.50

+ 1000 T545E-2 “15.75"7

~45.6 —L45e(+4) 0.000001234
4.11 Which of the following are invalid variable names and why?

Minimum first. Mame nl+nd

doubles 3rd-row HNE

flmat Sum Total Total-Marks
4,12 Find errors, if any, in the following declaration statements:

Int x;

float length, HEIGHT:

double = p,q;

character C1;

final imt TOTAL,;

final pi = 3.142;

long int m;

4.13 Write a program (o defermine the sum of the following harmonic seties for a given value of n:
1+ 12+ 1/3+..+1/n
The value of n should be given interactively through the keyboard.
4.14 Write a program to read the price of an item in decimal form (like 75.95) and print the output in paise (like
7595 paise).
4.15 Write a program to convert the given temperature in fahrenheit to celsius using the following conversion
formula
_F-32
1.8
and display the values in a tabular form.

C

DesvuccinGg EXERCISES

4.1 The following code resulis in compile time error, Identify the error.

public static void display()

{
int x = 123456:

float f = 100.12:
System.out _printin{ Float Value = " + f):

]
4.2 The following code results in compile time error. Identify the ermor.

Copyrighted material

43

4.4

4.5

 Constants, Variables, and Data Types 59

public static void display(x)
{ a

int ¥y;

if (x = 10)

{

¥ o= X

!)

System out.printin{“Value of ¥ =" + y):
}

What modification should be done to the following code so that the value of the vanable pie is not
miadifiable?
public static wvoid calculate()
{
float pie = 3.14T;
System.out.printin(“Value of Pie = " + pie):

}
The following code results in compile time error while storing the values of int varable to a byte variable.
Identify the problem with the code and provide the solution,
public static void convert()
{
int i = 1245;
byte b = i;
System.out . printin{“Value of Byte Variable b = ° + b);
f
Identify the error in the following code.

Class Scope
{

public static wvoid main (string args[])

{

int m = 10:

int m = 20;
!

}
}

Copyrighted material

Operators and
Expressions

iy

5.1 Introduction

Java supports a rich set of operators. We have already used several of them, such as =, +, —, and *. An
operator is a symbaol that tells the computer to perform certain mathematical or logical manipulations.
Operators are used in programs to manipulate data and variables. They usually form a part of
mathematical or logical expressions.
Java operators can be classified into a number of related categories as below:
Arithmetic operators
Relational operators
Logical operators
Assignment operators
Increment and decrement operators
Conditional operators
Bitwise operators
Special operators
In this chapter, we discuss each one of these categories with illustrations.

80 = oh M Bl b=

g 5.2 Arithmetic Operators

Arithmetic operators are used to construct mathematical expressions as in algebra. Java provides all
the basic arithmetic operators. They are listed in Table 5.1. The operators +, —, *, and / all work the

* Operstors and Exressions 61
same way as they do in other languages. These can operate on any buili-in numeric data type of Java.
We cannot use these operators on boolean type. The unary minus operator, in effect, multiplies its
single operand by ~ 1. Therefore, a number preceded by a minus sign changes its sign.

Cperator Meaning

+ Addition or unary plus

- Subtraction or unary minus

" Multiplication

/ Division

o Modulo division (Remainder)

Arnthmetic operators are used as shown below:

a-b a+b
a*b al/b
a%b —a*h :
Here a and b may be variables or constants and are known as operands.
Integer Arithmetic

When both the operands in a single arithmetic expression such as a + b are integers, the expression is
called an infeger expression, and the operation is called integer arithmetic. Integer arithmetic always
yields an integer value. In the above examples, if a and b are integers, then for a= 14 and b= 4 we have
the following results:

a-b = 10

a+b = |8

a*b = 56

a/b = 3 (decimal part truncated)
a%b = 2 (remainder of integer division)

a'b, when a and b are integer types, gives the result of division of a by b after truncating the divisor.
This operation is called the integer division.
For modulo division, the sign of the result is always the sign of the first operand (the dividend). That is

-14 % 3 = -2
-14 % -3 = -2
14 % -3 = 2

(Note that module division is defined as: a%b = a— (a’'b)*h, where a'b is the integer division.)
Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may
assume values either in decimal or exponential notation. Since floating point values are rounded to the
number of significant digits permissible, the final value is an approximation of the correct result.
Unlike C and C++, modulus operator % can be applied to the floating point data as well. The
floating point modulus operator returns the floating point eguivalent of an integer division. What this

62 - Frogramming wih Java: A Priver

means is that the division is carried out with both floating point operands, but the resulting divisor is
treated as an integer, resulting in a floating point remainder. Program 5.1 shows how arithmetic
operators work on floating point values.

Program 5.1 Floating point arithmetic

class FloatPoint
{

public static void main(String args[])

t
float a = 20.5F. b = & 4F:
System.out.printin{” a = " + a);
System.out.printin{® b = " + b);
System out.printin{” a+b = " + (a+b)):
System.out.printin{® a-b + (a-bl):
System.out .printin(” a*b + (a*b)):
System. out.printin(™ a/b = = + {a/b)):

System.out.printin(” aib {akb)):

The output of Program 5.1 is as follows:
a =205
b=6.4
a+bh = 26.9
a-b = 14.1
a*b = 131.2
a/b = 3.20313
atb = 1.3

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mived-mode
arithmetic expression. If either operand is of the real type, then the other operand is converted to real
and the real arithmetic is performed. The result will be a real. Thus

15/10.0 produces the result 1.5
whereas
15710 produces the result 1

More about mixed operations will be discussed later when we deal with the evaluation of
EeXpressions.

% 5.3 Relational Operators

We often compare two quantities, and depending on their relation, take certain decisions. For example,
we may compare the age of two persons, or the price of two items, and so on. These comparisons can

be done with the help of relational operarors. We have already used the symbol *<" meaning ‘less
than'. An expression such as

a<borx<?2

containing a relational operator is termed as a relarional expression. The value of relational expression
is either true or false. For example, if x = 10, then

X< 20 is true
while

20 = x is false.

Java supports six relational operators in all. These operators and their meanings are shown in
Table 5.2.

Table 5.2 Relational Operators

Clperator) Meaning

< i5 less than

== 15 less than or equal to

> is greater than

= 15 greater than or equal to
== is equal to

Jo is not equal to

A simple relational expression contains only one relational operator and is of the following form:

L ae-1 relational operator ae-2

ae—I and @e—2 are arithmetic expressions, which may be simple constants, variables or combination
of them. Table 5.3 shows some examples of simple relational expressions and their values.

[FE T =

[0 er TableS3 Relational Expressions
Expression
4.5 == 10
45<-10
—35 ==
10=T+5
a+b==c+d TRUE*

* Only if the sum of values of 2 and b is equal to the sum of values of ¢ and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic
expressions will be evaluated first and then the results compared. That is, arithmetic operators have a

higher priority over relational operators. Program 5.2 shows the implementation of relational
operators.

Copyrighted material

64 e I A Friber .
Program 5.2 Implementation of relational operators
class RelationalOperators

{
public static void main{String args[])
{
float a = 15.0F. b = 20,75F, ¢ = 15.0F;
System_out _printin{® a = " + a);:
System. out _printIn{® b = " + b):
System.out _printin{” ¢ = " + ¢);
System.out.printin{™ a < b is ~ + (a<b));
System.out.printin{® a = b is 7 + (a=b));
System. out.printin(® a == ¢ 15 " + (a==C));
System. out printin{™ a <= c 15 " + (a<=C)):
System_out.printin(” a >= b is " + (a==h));
System_out printIn(™ b !'= ¢ 15 ° + (bl=c});
System.out.printIn{® b == a+c is " + (b=ea+c));
}
}
The output of Program 5.2 would be:
a=15
b = 20.75
c=15 .

g = b is true

a>b is false

g == 15 true

g <= 15 Ltrue

a>=h 15 false

a != ¢ is true

b == a+c 15 false

Relational expressions are used in decision statements such as, if and while to decide the course of
action of a nnning program. Decision statements are discussed in detail im Chapters 6 and 7.

@ 5.4 Logical Operators
In addition to the relational operators, Java has three logical operators, which are given in Table 5.4.

1 logical NOT

Copyrighted material

The logical operators && and | | are used when we want to form compound conditions by combining
two or more relations. An example is:
a >0 & x=—10

An expression of this kind which combines two or more relational expressions is termed as a logical
expression or a compound relational expression. Like the simple relational expressions, a logical
expression also yields a value of true or false, according to the truth table shown in Table 5.5. The

logical expression given above is true only if both a > b and x = 10 are true. If either (or both) of them
are false the expression is false.

op-1 op -2 op-1d&&op-2 op-I|lop-2
true frue true frue
true false false true
false truc false true
false false falsi false

Note:
o op-I && op-2 is true i both ap- 1 and op- 2 are true and false otherwise.
e op—1 || op—2 is false if both op—1 and op-2 are false and true otherwise.
Some examples of the usage of logical expressions are:

1. if (age=55 && salary<l000)
2. 1f (number<{ || number=100}

g 5.5 Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. We have seen the
usual assignment operator, ‘=", In addition, Java has a set of *shorthand” assignment operators which
are used in the form

v Op= exp;

where v is a variable, exp is an expression and op is a Java binary operator. The operator op = is known

as the shorthand assignment operator.
The assignment statement

v op= exp:

15 equivalent to
v = v oplexp):

with v accessed only once. Consider an example
X o+= y+l:

This is same as the statement
¥ o= x+{y+l);

66 Programming wih Java: A Primer
The shorthand operator += means *add y+1 to X" or “increment x by y+1°. For y = 2, the above
statement becomes

% += 3

and when this statement 15 executed, 3 1s added to x. If the old value of x 1s, say 5, then the new value
of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 5.6.

1] AN W

= Ak T S 25.6 Sho . . R
Statement with simple Stctentent with
assignment operator shorthand operator
a = a+l a += 1
a = a-1 a -= 1
a = a*(n+l) a *= n+l
a = afln+l) a /= n+l
a = a%hb a %= b

The use of shorthand assignment operators has three advantages:
1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.
3. Use of shorthand operator results in a more efficient code.

5.6 Increment and Decrement
Operators

Java has two very useful operators not generally found in many other languages. These are the
increment and decrement operators.

++ and -
The operator ++ adds 1 to the operand while ——subtracts 1. Both are unary operators and are used
in the following form:
+4m: or m++:
==m; Qar M==
+4m; s equivalent tom=m + 1; (or m+= 1;)
——m; 15 equivalent tom=m - 1: (or m -= 1;)
We use the increment and decrement operators extensively in for and while loops. (See Chapter 7.)
While ++m and m++ mean the same thing when they form statements independently, they behave
differently when they are used in expressions on the right-hand side of an assignment statement.
Consider the following:
m = 5
y = +Hn
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statement as
m=5;
¥y = M+

Copyrighted material

then, the value of y would be 5 and m would be 6. A prefix operator first adds | to the operand and then
the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value
to the variable on left and then increments the operand. Program 5.3 illustrates this.

Program 5.3 Increment Operator lllustrated

class IncrementOperator
{
public static void main(String args[])
{
intm= 10, n = 20;
System.out.printin(*" m =" + m);
System_ out.printin{® n = " + n):
system.out.printin{® ++m = ~ + ++m);
system.out.printin{® n++ = = + m+);
System.out.printin{" m =" + m);
System_out.printin{®" n =" + n):

Output of Program 5.3 is as follows:
m= 10
n=20
++#m = 11
n++ = 20
m= 11
n=>~21

Similar is the case, when we use ++ {or - —) in subscripted variables. That is, the statement
ali++] = 10

is equivalent to

alil = 10
i = j+]

g 5.7 Conditional Operator

The character pair 7 : is a ternary operator available in Java. This operator is used to construct
conditional expressions of the form

expl 7 expd : expld

where expl, exp2, and expd are expressions.
The operator 7 : works as follows: expl is evaluated first. If it is nonzero (true), then the expression
expl is evaluated and becomes the value of the conditional expression. If expl i1s false, exp3d is

o Virreiracning W A Frimer

evaluated and its value becomes the value of the conditional expression. Note that only one of the
expressions (either exp or expd) is evaluated. For example, consider the following statements:
a = 10;
b = 15;
x={a>hb)?a:hb:
In this example, x will be assigned the value of b. This can be achieved using the if...else statement
as follows:
if{a > b)
X o= a:
else
x = b

g 5.8 Bitwise Operators

Java has a distinction of supporting special operators known as bitwise operators for manipulation of
data at values of bit level. These operators are used for testing the bits, or shifting them 1o the right or
left. Bitwise operators may not be applied to float or double. Table 5.7 lists the bitwise operators. They
are discussed in detail in Appendix D.

Operator Meaning

& bitwise AND

! bitwise OR

- bitwise exclusive OR

~ one’s complement

= chift left

e shift right

o shift right with zero fill

& 5.9 Special Operators

Java supports some special operators of interest such as instanceof operator and member selection
operator {.).

Instanceof Operator

The instanceof is an object reference operator and returns frue if the object on the left-hand side is an
instance of the class given on the right-hand side. This operator allows us to determine whether the
object belongs to a particular class or not.
Example:

person instanceof student
is frue if the object person belongs to the class student; otherwise it is false.

Copyrighted material

Dot Operator

The dot operator {.) is used to access the instance variables and methods of class objects. Examples:

personl.age I Reference to the variable age
personl.salary()} [/ Reference to the method salary()

It is also used to access classes and sub-packages from a package.

% 5.10 Arithmetic Expressions

An arithmetic expression is a combination of variables, constants, and operators arranged as per the
syntax of the language. We have used a number of simple expressions in the examples discussed so far.
Java can handle any complex mathematical expressions. Some of the examples of Java expressions are
shown in Table 5.8, Remember that Java does not have an operator for exponentiation.

ab-c a*b-c
(m+n)(x+y) (m+n)*(x+y)
ab

— a*hic

c
Ixct+2x+1 Fextx+2%+1
X, Q wy+e

¥

% 5.11 Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

variable = expression:

variable is any valid Java variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-hand side. All
variables used in the expression must be assigned values before evaluation is attempted. Examples of
evaluation statements are

¥ = a*h-c:

¥ = bic*a:

Z = a-hfc+d:

The blank space around an operator is optional and is added only to improve readability. When these

statements are used in program, the variables a,b,c and d must be defined before they are used in the
CXPTEssIons.

n * Progranming it dove: A Primr

fg 512 Precedence of Arithmetic
Operators

An arithmetic expression without any parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinct prionty levels of anthmetic operators in Java:

High priority * /X
Low priority + -
The basic evaluation procedure includes two left-to-right passes through the expression. During the
first pass, the high pnionty operators (if any) are apphed as they are encountered.
During the second pass, the low prionity operators (if any) are applied as they are encountered.
Consider the following evaluation staternent:
x = a=Df3 + ¢*2-]
When a =9, b= 12, and ¢ = 3, the statement becomes
x = 9-12/3+3%2-1
and is evaluated as follows:

First pass
Stepl: x = 9-d4+3%2-] (12/3 evaluated)
Stepd: x = 9-4+6-1 (3*2 evaluated)
Second pass
Stepd: x = H+6-] (0-4 evaluated)
Stepd: x = 11-1 (5+6 evaluated)
StepS: x = 10 (11-1 evaluated)

However, the order of evaluation can be changed by introducing parentheses into an ﬂpr:aamn
Consider the same expression with parentheses as shown below:

9-12/{3+3)%(2-1)

Whenever the parentheses are used, the expressions within parentheses assume highest prionty. If
two or more sels of parentheses appear one after another as shown above, the expression contained in
the lefi-most set is evaluated first and the right-most in the last. Given below are the new steps.

First pass
Stepl: 9-12/6%(2-1)
Step2: 9-12/6%1
Second pass
stepd: 9-2*1
Stepd: 9-2
Third pass
Steph: 7

This time, the procedure consists of three lefi-to-nght passes. However, the number of evaluation
steps remain the same as 5 (i.¢., equal to the number of arithmetic operators).

*Oporsors and Exprossions n

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward
from the innermost set of parentheses. Just make sure that every opening parentheses has a matching
closing one. For example

9-(12/(3+3)*2)-1 = 4
whereas
9=((12/3)+3*2)=]1 = =
While parentheses allow us to change the order of priority, we may also use them to improve

understandability of the program. When in doubt, we can always add an extra pair just to make sure
that the priority assumed is the one we require.

=
-8

513 Type Conversions in
Expressions

Automatic Type Conversion

Java permits mixing of constants and vanables of different types in an expression, but during
evaluation it adheres to very strict rules of type conversion. We know that the computer, considers one
operator at a time, involving two operands. If the operands are of different types, the “lower” type is
automatically converted to the *higher’ type before the operation proceeds. The result is of the higher
tvpe.

If byte, short and int variables are used in an expression, the result is always promoted to int, to
avoid overflow, If a single long is used in the expression, the whole expression is promoted to long.
Remember that all integer values are considered to be int unless they have the 1 or L appended to them.
If an expression contains a fleat operand, the entire expression is promoted to Moat. If any operand is
double, result is double. Table 5.9 provides a reference chan for type conversion.

Table 59 Automatic Type Conversion Chart

char byte short inf long Moat double
char int int int int long float double
byie int it int int long float double
short int int int int long float double
imt int init int int long ot double
long long long long long long float double
MNoat float float float float float float double

double double double double double double double double

The final result of an expression is converted to the type of the variable on the left of the assignment
sign before assigning the value to it. However, the following changes are introduced during the final
assignment.

1. Moat to int causes truncation of the fractional part.
2. double to Moat causes rounding of digits.
3. long o int causes dropping of the excess higher order bits.

72

Casting a Value

We have already discussed how Java performs type conversion automatically. However, there are
instances when we want to force a type conversion in a way that is different from the automatic
conversion. Consider, for example, the calculation of ratio of females to males in a town.

ratio = female number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part
of the result of the division would be lost and ratio would not represent a comect figure. This problem
can be solved by converting locally one of the variables to the floating point as shown below:

ratio = (float)female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of
the expression, Then using the rule of automatic conversion, the division is performed in floating point
mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female_number. And
also, the type of female_number remains as int in the other parts of the program.

The process of such a local conversion is known as casting a value. The general form of a cast is:

(type_name) expression

where type-name is one of the standard data types. The expression may be a constant, variable or an
expression. Some examples of casts and their actions are shown in Table 5.10,

Examples Action

x = {inmt) 7.5 7.5 15 converted to integer
by truncation

a = (int)2].3/01nt)4.5 Evaluated as 21/4 and the
result would be &

b = (double) sum/n Division is dome in
floating point mode.

y = (int) (a+h) The result of a + b is
converted to integer,

Zz = (int) a+b a 15 converted to integer
and then added to b.

p = cost ((double)x) Converts x to double before

using it as parameter.

Casting can be used to round-off a given value to an integer. Consider the following statement:
x = (int) (y+0.5):
If y is 27.6, v + 0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. OF
course, the expression being cast is not changed.
When combining two different types of variables in an expression, never assume the rules of
automatic conversion. It is always a good practice to explicitly force the conversion. It is more safer.

73

For example, when y and p are double and m 13 int, the following two statements are equivalent.
Y = pm;
y = p+{double)m;
However, the second statement is preferable.
Program 5.4 illustrates the use of casting in evaluating the equation

= 1
a3t
f=]

Program 5.4 [ustration of use of casting operation

class Casting

{
public static void main{String args[]}
{
float sum;
int i;
sum = 0.0F:
for(i = 1; 1 == 10; i++)
{
sum = sum + 1/(float)1;
System.out.print(™ i = " + 1);
System.out print(® sum = © + sum):
}
}
}
Program 5.4 produces the following output:
i=1 sum = 1
i=Z sum = 1.5
i=3 sum = 1.83333
i=4 sum = 2.08333
i=5 sum = 2.28333
i=8 sum = Z.45
i=7 sum = 2 59786
i=8 sum = 2.71786
i=9g sam = 2.B2897
i=10 sum = 2 _97R97

Generic Type Casting

Generics is one of the significant enhancements to Java by J2SE 5.0 programming language. Generics
eliminates the need of explicit type casting in collections. A collection is a set of interfaces and classes
that sort and manipulate a group of data into a single unit. For further information on collections, refer
to Chapter 18.

To retrieve elements from a collection, we need to typecast the elements, because each element in a
collection is considered to be an object. Also, typecasting is an unsafe operation because the compiler

Z * Proramming i Jov: A Primer

cannot check the wrong casts. The compiler throws an exception if the casts fail at runtime. When
using generics, the compiler inserts type casts at appropriate places to implement type casting.
Therefore, the typecast becomes implicit rather than explicit. Generics also determines the typecast
errors at compile fime rather than run time. Now, collections can contain objects of only one type.
Using Generics, we can specify the type information of data using a parameter. The type information
specifies the class and hierarchy of classes and interfaces to which the object belongs. The syntax to
declare a generic class is:

class SampleGenericClass <T=

{
}

Here, <T> indicates that the SampleGenericClass class is of generic type. Program 5.5 illustrates
the use of generic type in the ArrayList collection.

Program 5.5 [Nustration of use of generic type in collections.

import java.util_*:
public class Arraylistcollection
{
ArrayList<Integer= 1ist = new Arraylist<Integer=();
Numberinglist(1ist);
int total = 0;
[terator<Integer> iter=11ist.iterator(};
while (iter. hasNext()})
{
Integer val=iter.next():
total = total + val;
]
System. out . printin{ The Total Amount is “+total):
private static void Numberinglist(ArrayList<Integer> list})

list_add(new Integer(l)):
list. add(new Integer{Z}):

}
}

Program 5.5 produces the following output:
The Total Amount is 3

5.14 Operator Precedence and
Associativity

Each operator in Java has a precedence associated with it. This precedence is used to determine how an
expression involving more than one operator 15 evaluated. There are distinct levels of precedence and
an operator may belong to one of the levels. The operators at the higher level of precedence are

evaluated first. The operators of the same precedence are evaluated either from left to right or from
right to left, depending on the level. This is known as the associativity property of an operator.
Table 5.11 provides a complete lists of operators, their precedence levels, and their rules of association.
The groups are listed in the order of decreasing precedence (rank | indicates the highest precedence
level and 14 the lowest). The list also includes those operators which we have not yet discussed.

Table 5.11 Summary of Java Operators

75

Aﬁnmﬂaﬂuﬂy.

Operator Description Rank
. Member selection Left to right 1
£ Function call

[] Array element reference

- Unary minus Right to left 2
+ ok Increment

-— Decrement

! Logical negation

- Ones complement

{type) Casting

il Multiplication Left to right 3
! Division

i Modulus

+ Addition Left to right 4
- Subtraction

€ Left shift Left to right 8
= Right shift

L Right shift with zero fill

< Less than Left to right 6
et Less than or egual to

> Greater than

. Greater than or egual to

instanceof Type comparison

- Equality Left to right 7
1= Inequality

& Bitwise AND Left to right B
- Bitwize XOR Left to right 9
| Bitwise OR Left to right 10
&4 Logical AND Left to right 11
| | Logical DR Left to right 12
1: Conditional operator Right to left 13
= Assignment operators Right to left 14
op= Shorthand assignment

It is very important to note carefully, the order of precedence and associativity of operators. Consider
the following conditional statement:

if{x == 10+15 && y<10)
The precedence rules say that the addition operator has a higher priority than the logical operator (&&)

Copyrighted material

7 * Programming with daa: A Prior
and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first. This is
equivalent to:
if(x == 25 && y<10)
The next step is to determine whether x is equal to 25 and vy is less than 10, [f we assume a value of 20
for x and 5 for y, then
¥ == 25 1% FALSE
¥ < 10 1s TRUE
Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and then
x == 25 1s tested.
Finally we get:
if(FALSE && TRUE)
Because one of the conditions is FALSE, the compound condition is FALSE.

=

N

£ 5.45 Mathematical Functions

Mathematical functions such as cos, sgrt, log, etc. are frequently used in analysis of real-life problems.

Java supports these basic math functions through Math class defined in the java.lang package.

Table 5.12 lists the math functions defined in the Math class. These functions should be used as follows:
Math. function_name()

Example:
dgouble y = Math.sqrt(x);

&inix) Rewms the sine of the angle x in radians

Cos(x) Rewms the cosine of the angle x in radians

tan(x) Retums the tangent of the angle x in radians

asin(y) Returns the angle whose sine is v

acos(y) REeturns the angle whose cosine is v

atan{y) Retumns the angle whose tangent is y

atan2(x,y) Returns the angle whose tangent is x'y

powix.y) Returns x raised to v (x%)

expix) Returns ¢ raised to x (e*)

logix) Returns the natural logarithm of x

SO Returns the square root of x

ceil{x) Returns the smallest whole number greater than or
equal to x. (Rounding up)

floorx) Returns the largest whole number less than or
equal to x (Rounded down)

rini{x) Retums the truncated value of x.

round(x) Retumns the integer closest to the argument

abs{a) Returns the absolute value of a

maxia,b) Retwms the maximum of a and b

muinfab) Returmns the minimum of a and b

Note: x and v are double type parameters. a and b may be ints, longs, floats and doubles.

Copyrighted material

Opeeionyfrd Exprpasions. n
{;’5 516 Summary

We have discussed all the basic data types and operators available in Java and also seen their use in
expressions. Type conversions and order of precedence of operators during the evaluation of
expressions have been highlighted. Program 5.6 winds up our discussions by demonstrating the use of
different types of expressions.

Finally, it is important to note that all Java types have fixed sizes. There is no ambiguity and all Java
types are machine-independent.

Program 5.6 Demonstration of Java expressions

class ExpressWrap
{
public static void main{String args[])

{

/1 Declaration and Initahzation
inta=10 b=5 ¢c=8.d=2:
float x = 6.4F, v = 3.0F;

{1 Order of Evaluation
int answerl = a * b +cC / d:
int answer? = a * (b + ¢c) / d:

/I Type Conversions

float answerd = a / c:

float answerd = (float) a / c;
float answerh = a / y;

A Maodulo Operations
int answerg = a ¥ ¢;
float answer? = x ¥ y;

/! Logic Operations

boolean booll = a > b && ¢ > d;
boolean bool2 = a < b & ¢ = d;
boolean boold =a <b || c > d:
boolean boold = | {a — b == £);

System.out .printin(~Order of Evaluation™):
system.out.printinf a *b+cCc /f d =" + answerl);
System.out printin{™ a * (b +c) f d =" + answerd);

System. out .printIn{“Type Conversion”);

System.out printIn(® a / ¢ = " + answerd):
System.out.printin{” (float) a / c = " + answerd):
System.out .printIn(™ a / ¥y = 7 + answerh);

{ Continued)

78

Program 5.6 (Continued)

—t

System.out.printin{“Modulo Operations™):
System.out.printIni® a % ¢ = " + answer6):
System.out.printin{® x ¥ y = " + answer7):

System.out.printin{Logical Operations™);

System.out printin(* a>b 88 c > d = " + booll):
System_out.printin(® a < b 88 ¢ > d = " + bool2):
System.out .printin{ a <b || c > d =" + bool3);
System.out.printIn(™ ! (a = b == ¢} = " + bool4):

Program 5.6 outputs the following:

Order of Evaluation
d*b+c/d=54
a*{b+c)/d=85

Type Conversions
ajfec=1
(float) a /f c = 1.25
a/y=3133333

Modulo Operations
alc=2
xiy=10.4

Logical Operations
a>b &k ¢>d = true
a<b&c=>d-= false
a<b||e>d=true
! {a=b == ¢} = true

5.1 Which of the following arithmetic expressions are valid?

(a) 253 %2

(c) 75%3

(e) -14%3 |

(g (5/3)*3+5%3

(b) +9/4+5

(d) 14%3+7%2
(f) 1525+ -5.0
(hy 21 % (int)4.5

Copyrighted material

32

5.3

54

5.5

5.6

5.7

3.8

3.9

* Operators and Expressions 79

Write Java assignment statements to evaluate the following equations:
211,115
my + m;

{a) Area=mr + 2rrh (b) Torgue =

(c) Side= ya®+b’-2abcos(x) (d) Energy=mass (mﬂm * height + YOIt
Identify unnecessary parentheses in the following arithmetic expressions.

(a) (x~{y 5)y+z)% 8)+ 25

(b) ((x-y)*p)+q

{e) (m*n)+(-xfy)

(d) xA{3*v)

Find errors, if any, in the following assignment statements and rectify them.

(a) x=y=z=0.5 2.0- 3575

(b) m=++a®* 3}

(e} y = sqri(100);

(d) p*=xly;

(e) 8=/5;

(N a=b++-c*2

Determine the value of each of the following logical expressions ifa= 5 b= 10 and ¢ = -6

(a) a~b&&a<c
b) a<b&&a>c

(c) a=c|b=>a
(d) b>15&&c<0]a=0

(e) (2.0=100 && b2.0!=0.0) || c<0.0

The straight-line method of computing the yearly depreciation of the value of an item is given by
Purchase price — Salvage value

Years of service

Write a program to determine the salvage value of an item when the purchase price, vears of service, and
the annual depreciation are given.

Write a program that will read a real number from the kevboard and print the following output in one line:

Depreciation =

Smallest integer The given number Largest integer
not less than not greater than
the number the mumber

The total distance travelled by a vehicle in t seconds is given by

distance = ut + {at’)/2
where u is the initial velocity (metres per second), a is the acceleration (metres per second”). Write a
program 0 evaluate the distance travelled at regular intervals of time, given the values of ¥ and a, The
program should provide the flexibility to the user to select his own time intervals and repeat the

calculations for different values of w and a.
In inveniory management, the Economic Order Quantity for a single item is given by

EDQ'-‘{ 2* demand rate * setup costs
holding cost per item per unit time
and the optimal Time Between Orders

Copyrighted material

510

TBO = j' 2 * setup cosls
\'dmwﬂ rate*holding cost per item per wnit time
Write a program o computer EOQ) and TBO, given demand rate {items per unit time), setup costs (per
order), and the holding cost (per item per unit time).
For a certain electrical circuit with an inductance L and resistance R, the damped natural frequency is
given by

]
1 R
Frequency = E_E

It is desired 1o study the variation of this frequency with C (capacitance). Write a program to calculate the
frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.

DeBuGcGInG EXERCISES

In the following code the expected value is 8, but it prints the value 2. What would you modify in the code
to obtain the expected value?

public static void calculatel)

{
int 1 = 47 + 45 - 48 - §;
int j=5+5-8+ 2
int ans = i ¥ j:

System_out printin{“Value of Ans = ~ + ans):

}

In the following code the expected value is 78 bat it retums the value 39, What would you modify in the
code o obtain the expected value?

public static void calculate()

{
int ans = 42 + 45 - 48 - 5 - 15 + 20 * 2;
system.out . printin{~Value of Ans = = + ans);

}
The following code results in compilation error. Debug the code and rectify the problem.
public static void calculate(}

{
int ans = (2 (+5 - B) (+ 5 - 5) + 10) * 2;
system.out . printin(“Value of Ans = © + ans);

}
In the code given below, what should be changed to obtain the value of 40.0 for X7

public static void calculate()

{
double x = Math.rint(40.6);
double y = Math.abs(40.6):
System.out.printin(~Value of X is = " +x + " and ¥ i5 =" + y):

}

Copyrighted maierial

Decision Making and
Branching

o o

‘Z 61 Introduction
A Java program is a set of statements, which are normally executed sequentially in the order in which
they appear. This happens when options or repetitions of certain calculations are not necessary.
However, in practice, we have a number of situations, where we may have to change the order of
execution of statements based on certain conditions, or repeat a group of statements until certain
specified conditions are met. This involves a kind of decision making to see whether a particular
condition has occurred or not and then direct the computer to execule certain statements accordingly.
When a program breaks the sequential flow and jumps to another part of the code, it is called
branching. When the branching is based on a particular condition, it is known as conditional
branching. If branching takes place without any decision, it 15 known as unconditional branching.
Java language possesses such decision making capabilities and supports the following statements
known as conirol or decision making statements.

1. if statement
2. switch statement
3. Conditional operator statement

In this Chapter, we shall discuss the features, capabilities and applications of these statements which
are classified as selection statements.

82

 Programmung it Jave: A Primer

e
*{@ 6.2 Decision Making with If Statement

The if statement is a powerful decision making statement and is used to control the flow of execution
of statements. It is basically a rwo-way decision statement and is used in conjunction with an
expression. [t takes the following form:

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether the value of
the expression (relation or condition) is “true’ or “false’, it transfers the control to a particular statement.
This point of program has two paths to follow, one for the frue condition and the other for the false
condition as shown in Fig. 6.1.

Entry

wat False
EnpTE SO i

|Trul

GBS Twoway branching

Some examples of decision making, using if statement are:

1.

2.

if (bank balance is zera)
borrow money

if (room is dark)
put on lights

. if [code is 1)

person is male

. if (age is more than 55)

person is retired

The if statement may be implemented in different forms depending on the complexity of conditions

to be tested.

1. Simple 1f statement

2. if..else statement

3. Nested if. .else statement
4. else 1f ladder

Copyrighted material

% 6.3 Simple If Statement
The general form of a simple if statement is

if(test expression)

{

statement-block:

}

statement—x:

The ‘statement-block’ may be a single statement or a group of statements. If the fest expression is
true, the statement-block will be executed; otherwise the statement-block will be skipped and the
execution will jump to the statemeni-x.

It should be remembered that when the condition is true both the statement-block and the statement-
x are executed in sequence. This is illustrated in Fig. 6.2,

\ Entry

et statement

"WFigi82" Flowchart of simple if control

Consider the following segment of a program that is written for processing of marks obtained in an
entrance examination.

{

marks = marks + bonus marks:

System. out . printin(marks):

The program tests the type of category of the student. [fthe student belongs to the SPORTS category,
then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks
are not added.

Consider a case having two test conditions, one for weight and another for height. This is done using
the compound relation

if (weight < 50 && height = 170) count = count +];

This would have been equivalently done using two if statements as follows:

ifiweight<50)
if{height=170)
count = count+l:

If the value of weight is less than 50, then the following statement is executed, which in tumn is
another if statement. This if statement tests height and if the height is greater than 170, then the count
is incremented by 1. Program 6.1 illustrates the implementation of the above statement.

Program 6.1 Counting with if statement

class I[fTest

{
public static void main{String argll)
{
int i, count, countl, count?:
float[] weight = { 45.0F. 55.0F, 47.0F, 51.0F. 54.0F }:
float[] height = { 176.5F, 174 2F, 168.0F, 170.7F, 169.0F };
count = 0
countl = 0:
count2 = D:
for (i = 0: 1 == 4: 9J44)
iflweight[1] < 50.0 &% height[i] = 170.0)
{
countl = countl + 1:
}
count = count + 1; // Total persons
}
count? = count - countl:
System.out.printin(“Number of persons with ...7J;
System.out.printin{ “Weight<h0 and height=17/0 = ° <+countl):
System.out.printin{"Others = ° + count2):
]
}

The output of Program 6.1 will be;

Number of persons with .
Weight = &0 and height = 170 = 1
Others = 4

Copyrighted material

o~
> 4 6.4 The If...Else Statement

The if...else statement is an extension of the simple if statement. The general form is

if{test expression)
{

}

else

True-block statement({s)

False-block statement{s)

|
statement -x

If the test expression is true, then the true-block statement(s) immediately following the if statement,
are exccuted; otherwise, the false-block statemeni(s) are executed. In either case, either true-block or
falve-block will be executed, not both, This is illustrated in Fig. 6.3. In both the cases, the control is

transferred subsequently to the stafemeni-x.

Entry

Trua Flge
e I
\ |
Trse-binck Falsa-block
Stataments Statements

ey —
1

Let us consider an example of counting the number of boys and girls in a class. We use code | fora
boy and 2 for a girl. The program statements to do this may be written as follows:

iflcode == 1)

boy = boy + 1:
if{code == 2)

girl = girl + 1:

Copyrighted material

b * Programmig it Jovs: A Priner
The first test determines whether or not the student is a boy. If ves, the number of boys is increased
by | and the program continues to the second test. The second test again determines whether the

student is a girl. This is unnecessary. Once a student is identified as a boy, there is no need to test again

for a girl. A student can be either a boy or girl, not both. The above program segment can be modified
using the else clause as follows:

iflcode == 1)

boy = boy + 1:
else

girl = girl + 1;
A

to the statement xxx, after skipping the else part. If the code is not equal to 1, the statement boy = boy
+ 1; 15 skipped and the statement in the else part girl = girl + 1; is executed before the control reaches
the statement xxx.

Program 6.2 counts the even and odd numbers in a list of numbers using the if...else statement.
number| | is an array variable containing all the numbers and number.length gives the number of
elements in the array,

Program 6.2 Experimenting with if....else statement
class IfElseTest

{
public static void main{5tring args[])
{
int number(] = { 50. 65, 5&6. 71. Bl }:
int even = 0, odd = 0;
for (int 1 = 0; 1 < number.length: 9i++)

it ((number[i] ¥ Z) == 0} // Decide even or odd
'l

}

else

':

}
}

system.out.printin("Even Numbers : ° + gven +
 0dd Numbers : ° + odd);

evenn += 1. // counting EVEN numbers

odd += 1. // counting ODD numbers

Output of Program 6.2:
Even Numbers : 2 Odd MNumbers : 3

m & 87

% 6.5 MNesting of If....Else Statements

When a senes of decisions are involved, we may have to use more than one if....else statement in nested
form as follows:

if (test conditionl)
{

if (test condition?)
{

statement-1l: ——y
}

mm— -1 1)

{

statement-2; ——
}

1
= glse

{

}
statement-x;

statement-3; —

The logic of execution is illustrated in Fig. 6.4. If the condition-1 is false, the statement-3 will be
executed; otherwise it continues to perform the second test. Ifthe condition-2 true, the statement-1 will
be evaluated; otherwise the statement-2 will be evaluated and then the control is transferred to the
statement-x.

A eommercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The
policy is as follows: A bonus of 2 per cent of the balance held on 315t December is given to every one,
irrespective of their balances, and 5 per cent is given to female account holders if their balance is more
than Rs 5000, This logic can be coded as follows:

if (balance = 5000)
bonus = 0.05 * balance;
else
} bonus = 0.0 * balance:

else

bonus = 0.02 * balance:
'

balance = balance + bonus:

Entry

. Me_‘-e Flowchart of nested if....else statements

When nesting, care should be exercised to match every if with an else. Consider the following
alternative to the above program (which looks right at the first sight):

if(sex is female)
if(balance = 5000)
bonus = 0.05 * balance:
else
bonus = (.02 * balance;
balance = balance + bonus:

There is an ambiguity as to over which if the else belongs to. In Java an else 15 linked to the closest
non-terminated if. Therefore, the else is associated with the inner if and there is no else option for the
outer if. This means that the computer is trving to execute the statement

balance = balance + bonus:

without really calculating the bonus for the male account holders.
Consider another alternative, which also looks correct: -

Copyrighted maierial

Decision Making and Branching. 89

if(sex is female)

{
if (balance = 5000)
bonus = 0.05 * balance:
|
else
bonus = 0.02 * balance:
balance = balance + bonus:

In this case, else is associated with the outer if and therefore bonus is calculated for the male account
holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is
not calculated because of the missing else option for the mnner if.

Program 6.3 employs nested if....else statements to determine the largest of three given numbers.
Program 6.3 Nesting if...else statements

class I[fEl1seNesting

public static wvoid main(String args[])

{
int a = 325, b = 712, ¢ = 478:
System.out.print{"Largest value 1is : "):
if (a > b)
{
if (a = c)
system.out . printin(a);
}
else
ﬂ
system.out _printin(c);
}
}
glse
if {(c = b)
{ |
System_out.printinic):
}
else
{ |
System.out.printin{b);
}
}
}
}
Output of Program 6.3:

Largest wvalue 1s : 712

Copyrighted material

% 6.6 The Else If Ladder

There is another way of putting ifs together when multipath decisions are involved. A multipath
decision is a chain of ifs in which the statement associated with each else is an if. It takes the following
general form:

if (conditionl)
statement-1:

else if {(condition2)
statement-2;

else if (condition3)
statement-3:

aaaaaaaaaaaaaaaaaaaaaaaa

else if {(condition n)
statement-n:

else
default-statement;

statement-x: ¥

This construct is known as the else if ladder. The conditions are evaluated from the top (of the
ladder), downwards. As soon as the true condition 15 found, the statement associated with it 1s executed
and the control is transferred to the statement-x (skipping the rest of the ladder). When all the n
conditions become false, then the final else containing the defauli-statement will be executed. Figure
6.5 shows the logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done
according to the following rules:

Average marks Grade

80 to 100 Honours

60 w 79 First Division
50 w 59 Second Division
40 w 49 Third Division
0w 39 Fail

This grading can be done using the else if ladder as follows:

if(marks > 79)
grade = “Honours :

 Decision Making and Branching 9
else 1ftmark5 > BQ)
grade = "First Division™:

else ifi(marks > 49)
grade = “Second Division”:

else if(marks = 39)
grade = "Third Division™;

else
grade = “Fail™;
System.out . printin{"Grade: ~ + grade};

Copyrighted material

if (code == 1}

colour = “RED":
else if (code == 2)
colour = “GREEN™:

else if (code == 3)
code = "WHITE":

glse
colour = “Yellow":

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results
can be obtained by using nested if....else statements.

ificode != 1)
if (code != £)
if (code !'= 3}
colour = “YELLOW™:

else
colour = “WHITE":
else
colour = “GREENT:

else
colour = “RED™:

In such situations, the choice of the method is left to the programmer. However, in order to choose
an if structure that is both effective and efficient, it is important that the programmer is fully aware of
the various forms of an if statement and the rules governing their nesting.

Program 6.4 demonstrates the use of If....else ladder in analysing a mark list.

Program 6.4 Demonstration of else if ladder

class Elselfladder
{

public static void main(String args(])

{
int rollNumber[] = { 111, 222, 333. 444 };
int marks[] = { 81, 75, 43, 58 }:
far (int 1 = 0; 1 =< rollNumber. length; i++)

if (marks[i] = 79)
System.out.printin(rolINumber[i] + "~ Honours™):
else if (marks[i] = 5%9)

(Continued)

Decision Meking and Eranching 93

Program 6.4 (Continued)

System.out.printin(rol TNumber[i] +
else if (marks[i] > 49)
System.out _printin{rol INumber[1] + ° II Division™):
glse
System. out _printin(rol INumber[1] + © FAIL"):

I Division™):

}
}
!
Program 6.4 produces the following output:
111 Honours
222 1 Division
333 FAIL

444 I1 Division

@ 6.7 The Switch Statement

We have seen that when one of the many alternatives is to be selected, we can design a program using
if statements to control the selection. However, the complexity of such a program increases
dramatically when the number of altematives increases, The program becomes difficult to read and
follow. At times, it may confuse even the designer of the program. Fortunately, Java has a built-in
multiway decision statement known as switch. The switch statement tests the value of a given variable
(or expression) against a hst of case values and when a match is found, a block of statements associated
with that case is executed. The general form of the switch statement is as shown below:

switch (expression)
{
case value=1:
block-1
break -
case value-2:
block -2
break :
default
default-block
break
!
statement —x;

The expression is an integer expression or characters. value-J, valuwe-2 ... are constants or constant
expressions (evaluable to an integral constant) and are known as case labels. Each of these values
should be unique within a switch statement. block-1, block-2 are statement lists and may contain
zero or more statements. There is no need to put braces around these blocks but it 15 important to note
that case labels end with a colon ().

[
—_

When the switch is executed, the value of the expression is successively compared against the
values value-/, value-2, If a case 15 found whose value matches with the value of the expression,
then the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit
from the switch statement, transferring the control to the statemeni-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does
not match with any of the case values. If not present, no action takes place when all matches fail and the
control goes to the statement-x.

The selection process of switch statement 15 illustrated in the flowchart shown n Fig. 6.6.

i1

~| block1 |—
ENpression = ‘
vialpe-2 R)

| ¥
(Mo match) default default i

" Fig-88B " Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is
illustrated below:

index = marks/1l0:
switch(index)

{

{Continued)

Copyrighted material

Program (Continued)

case 10:

case 9:

case 8:
grade = “Honours™:
break -

case 7:

case 6:
grade = "First Division™;
break:

case 5:
grade = "Second Division™:
break:

case 4:
grade = “Third Division :
break:

default:
grade = “Fail":
break:

!

System.out.printin{grade);

Mote that we have used a conversion stalement
index = marks/10:

where, index is defined as an integer. The variable index takes the following integer values.

Marks Index

100 10
- 99
- B9
- 79
- 69
- 39
- 49
- 39
- 29
- 19
9

The segment of the program illustrates two important features. First, it uses empty cases. The first
three cases will execute the same statements

grade = “Honours":
break:

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where
marks is less than 40,

cB2EL822EE
I R T -

=
|

Copyrighted maierial

LM

Program 6.5 illustrates the use of switch for designing a menudriven interactive program.

Program 6.5 Testing the switch ()

class CityGuide

{

public static void main(3tring args[])

{

char choice;

system.out.printin{ Select your choice’™);
System.out.printin(®™ M -= Madras™);
System_out.printin(®™ B -> Bombay™):
system.gut.printin{® C —= Calcutta™);
System.out.print{"Choice --->").
System.out. flushi):

try
{
switch (choice = (char) System.in_read(})
{
case 'M':
case 'm’: System. out.printin(”Madras : Booklet 57):
break:
case 'B':
case 'b’: System.out.printin(”Bombay : Booklet 97):
break:
case ‘C7;
case "C°: System.out.printIn{“Calcutta: Bookletlh™);
break
default: System.out.printin(Invalid Choice (IC)7};
}
}
catch (Exception e)
{
System.out.printIn{"I/0 Error™):
!
}
}
Output of the Program 6.5:
Runl
Select your choice
M ———> Madras
B ———> Bombay
L ===> Calcutta
Choice =-=> m
Madras Booklet 5

Copyrighted material

" Decision Making and Branching o7

Runs

select your choice
M ——=> Madras
B —-> Bombay

C —= Calcutta
Choice —= M
Madras : Booklet 5
T X
Select your choice

M ——> Madras

B —-—> Bombay

C —= Calcutta
Choice ——= ¢
Calcutta : Bookletls

% 6.8 The 7?7 : Operator

The Java language has an unusual operator, useful for making two-way decisions. This operator is a
combination of ? and :, and takes three operands. This operator is popularly known as the conditional
operator. The general form of use of the conditional operator is as follows:

conditional expression T expression] : expression

The condirional expression is evaluated first. If the result is true, expression/ is evaluated and 1s
returned as the value of the conditional expression. Otherwise, expression? is evaluated and its value 15
returned. For example, the segment

if (x< D)
flag = 0:
else
flag = 1:
can be written as
flag = (x=<0) 70 : 1:
Consider the evaluation of the following function:
y=150c+3 forx <=2
¥y=2x4+5 for x = 2
This can be evaluated using the conditional operator as follows:
y o= {x=>2) ? (2*x+5) : (1.5%x+3):

The conditional operator may be nested for evaluating more complex assignment decisions. For
example, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the
number of products sold in a week, her weekly salary is given by

{ dx + 100 for x < 40
salary = | 300 for x = 40
{ 4.5x + 150 for x = 40

Copyrighted material

% PR R
This complex equation can be written as
salary = (x!= 40} 7 ((x<40} 7 (4*x+100) : (4.5%*x+150)) : 300:
The same can be evaluated using if....else statements as follows:
if (x == 40)
if (x<4l)
salary = 4*x+100;
else
salary = 300:
else
salary = 4 5%x + 150;
When the conditional operator is used, the code becomes more concise and perhaps, more efficient.
However, the readability is poor. It is better to use if statements when more than a single nesting of
conditional operator is required.

| 6.9 Summary

We have discussed in this chapter the features of the following selection statements supported by Java:
« if statement
* swilch statement
+ 7 pperator statement
We have seen the various forms of application of these statements and discussed how they can be
used to solve real-life problems. Control execution is an extremely important tool in programming.
The concepts discussed here will be certainly useful in developing complex systems.

“ Key Terms

Decision Making, Branching, Control, Conditional Branching, Ladder, Selection, Switch, Conditional
Operator.

ReviEw annon

6.1 Determine whether the following are true or false:

{a) When if statements are nested, the last else gets associated with the nearest if without an else.
(b) Ome if can have more than one else clause,
{c) A switch statement can always be replaced by a series of if..else statements.
id) A switch expression can be of any type.
{e) A program stops its execution when a break statement in encountered.
6.2 Inwhat ways does a switch statement differ from an if statement?
6.3 Find errors, if any, in each of the following segments:

(m) 1T (x+y = 2 K& y=0)

6.4

6.5

6.6

6.7

6.8

(b) 1f(code=1):
a = b+
else
a =1
(c) if (p=0) || (g=0)

The following is a segment of a program;
X = 1;
y = 1:
if{n=0)
Xo= x+]l:
¥ o= y-1:
What will be the values of x and v if n assumes a value of (a) 1 and (b) 0.
Rewrite each of the following without using compound relations:
{a) ifigrade<=59 && grade==5()
second = second + 1
(b) if(number=100 || number<()
system.out . print{"0ut of range™):
else
Sum = sum + number:
(c) 1F{(Ml=60 && MZ2=60 || T=200)
y=1:
else
y=0.
Write a program to find the number of and sum of all integers greater than 100 and less than 200 that are
divisible by 7.
A set of two linear equations with two unknowns x, and x, is given below:
ax; + bxy =m
cx; +dx,=n
The set has a unique solution

md - bn
1" ad-eb
na-=mc
2% ad-cb

provided the denominator ad — cd is not equal to zero.

Write a program that will read the values of constants a.b,c.d, m and n and compute the values of x| and x..
An appropriate message should be printed if ad - cb = 0.

Given a list of marks ranging from 0 to 100, write a program to compute and print the number of students
who have obtained marks

{a) im the range K1 to 100,

(b} in the range 61 to B0,

{c) in the range 41 to 60, and

{d) in the range 0 to 40,

The program should use a minimum number of if statements.

100

6.9 Admission to a professional course is subject to the following conditions:
(a) Marks in mathematics
{b) Marks in physics

{c) Marks in chemistry

(d) Total in all three subjects

Total in mathematics and physics = = 150

for)

> =gl
==50
= =4
> = 200

Given the marks in the three subjects, write a program to process the applications to list the eligible

candidates.

6.10 Write a program to print a two-dimensional Square Root Table as shown below, to provide the square root
of any number from 0 to 9.9. For example, the value x will give the square root of 3.2 and y the square root

of 3.9.

Square Root Table

MNumber

0.0

0.1

0.2

0.9

0.0
1.0
2.0

30

2.0

6,11 Shown below is a Floyd"s inangle.

1

23
456
TE8910
...

L SRR e

{a) Write a program to print this triangle.
(b} Modify the program to produce the following form of Floyd's triangle.

|
01
101
0101
10101

15

91

Copyrighted material

 Decision Making and Branching 101

6.12 A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase Discount
amount
Mill cloth Handloom items
0100 — 5.0%
101-200 5.0% T.5%
201-300 T.5% 10.0%%
Above 300 10.0% 15.0%

Wnite a program using switch and if statements to compute the net amount to be paid by a customer.
6.13 Write a program that will read the value of x and evaluate the following function

{ 1 forx =0
y =1 o forx =0
{ -1 fior x < 0

using

(a} mested il statements,
(b} else if statemients, and
{c) conditional operator?:,

DeBuccinG EXERCISES

6.1 In the following code the student grade is declared based on the result achieved. The student must be
declared ‘Failed” if the grade is *F". Correct the code to declare the correct grade of the student?
class IfElse
{

public static void main{String[] args)
E

int result = 55;
char grade;
it (result == 90)

{
grade = "A";

}
else 1f (result >= BO)
{

grade = ‘B’ :

else if (result »= 70)

{
grade = "C°;

{ Contined)

Copyrighted material

102 * Programmig i Jova: A Priner

Program (Continued)

}
else if (result == 60)
{
grade = ‘0"
}
glse
{
grade = 'F:
}
else
{ |
grade = 'G":

System.out .printin(~Grade of the Student is = + grade):

}
}
6.2 Following code should compare the value of a variable with the expected value and print appropriate
message. What would you modify in the code to obtain the expected message?
class CheckValue

{

public static void main{String[] args)

{
inti=2;
if(i=2) {
System. out.printin{“Correct Value™);
}
else

System.out.printin{~Incorrect Value™):

}

]

!
6.3 The following code results in compilation errors. Debug the code and correct the problem.

class NumberValue

public static woid main{String[] args)
{

int number = 3:

switch (number)

{

case 0;
System, out, printIn(“Number is 0°):
break :

(Continued)

Copyrighted material

Program (Continued)

" Dacialon M wd DA 103

}
}

case 1.
System.out.printIn{ "Number is 1"):

break ;

case 2:
case 3.
case 3:
System.out.printin{“Number is 2. 3 or 47):

break ;

default:
System_out. printin{ Number 15 less than 0 or

greater than 47);

6.4 Provide the missing statement in the following code which derives the month name given the month

numher?

claas.ﬂnnthﬂame

public static void main(String[] args)

{

int month = 8:
switch

{

Ccase

casg

casg

casg

case

case

case

cdse

(month)

l:
System.
break:
.
System.
break:
3¢
System.
break ;
4.
System.
break:
§:
aystem,
break :
b
System.
break:
7:
System.
break:
B:

aut

Out

aut .

agut.

out

out.

out

printini“January”™);

.printin("February™);

printin{“March”):

printin{ April™):

printin{“May™);

printin{”“June”):

printIn{“July”):

{Continued)

Copyrighted material

104 Programming with Java: A Primer
Program (Continued)

System. out . printini“August™):

case 9.
system.out.printin(~September™);
break :

case 10:
system.out.printin(~October™):
break ;

case 11:
System, out . printin(“November™):
break:

case 1£:
System.out.printin{ December”);
break :

default:
system.out .printin(not a month!™);
break :

}
6.5 Correct the code for comparison berween three numbers?
class Nestedlf

public static void main(String[] args)

{
int x =3 y=1 2z=5:
if(x = y)

1f(z <= y)
(

}
else if

|

System.out.printIn{"y is greater than z7);

System.out.printin(®z is greater than y"):
System.out . printIn(™x is greater than y°);
else
if (y = 2)

System.out .printin(“y is greater than z"):

Copyrighted material

Decision Making
and Looping

g 7.1 Introduction

A computer is well suited to perform repetitive operations. It can do it tirelessly for 10, 100 or even
10,000 times. Every computer language must have features that instruct a computer to perform such
repetitive tasks. The process of repeatedly executing a block of statements is known as looping. The
statements in the block may be executed any number of times, from zero to infinite number. If a loop
continues forever, it is called an infinire loop.

Java supports such looping features which enable us to develop concise programs containing
repetitive processes without using unconditional branching statements like goto statement.

In looping, a sequence of statements are executed until some conditions for the termination of the
loop are satisfied. A program loop therefore consists of two segments, one known as the body of the
loop and the other known as the control statement. The confrol statement tests certain conditions and
then directs the repeated execution of the statements contained in the body of the loop.

Depending on the position of the control statement in the loop, a control structure may be classified
either as the enfry-controlled loop or as exit-controlled loop. The flowcharts in Fig. 7.1 illustrate these
structures. In the entry-controlled loop, the control conditions are tested before the start of the loop
execution. If the conditions are not satisfied, then the body of the loop will not be executed. In the case
of an exit-controlled loop, the test is performed at the end of the body of the loop and therefore the
body is executed unconditionally for the first time.

106

i i |
Body of
the
Tast False loop
condition
1 P
{ Falsa
_ Test ™ |
Body of condition
the loop

S e

T
{a) Entry control (b} Exit cantral

The test conditions should be carefully stated in order to perform the desired number of loop
executions. It is assumed that the test condition will eventually transfer the control out of the loop. In
case, due to some reason it does not do so, the control sets up an infinite loop and the body is executed
over and over again,

A looping process, in general, would include the following four steps:

1. Setting and initialization of a counter.

2. Execution of the statements in the loop.

3. Test for a specified condition for execution of the loop.
4, Incrementing the counter.

The test may be either to determine whether the loop has been repeated the specified number of
times or to determine whether a particular condition has been met with.

The Java language provides for three constructs for performing loop operations. They are:

1. while construct
2. do construct
3. for construct

We shall discuss the features and applications of each of these constructs in this chapter.

 Declsion Meking and Loaping L

% 7.2 The While Statement

The simplest of all the looping structures in Java is the while statement. The basic format of the while
statement is

Initialization:
While {(test condition)

{
)

Body of the loop

The while is an entry-controlled loop statement. The test condition is evaluated and if the condition
15 true, then the body of the loop is executed. After execution of the body, the test condition is once
again evaluated and if it is true, the body is executed once again. This process of repeated execution of
the body continues until the test condition finally becomes false and the control is transferred out of the
loop. On exit, the program continues with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body
contains two or more statements, However, it 15 a good practice to use braces even if the body has only
one statement.

Consider the following code segment:

sum = 0;
n = 1:
whilein <= 10)
{
SUm = sum + n * n;
n = n+l;
}
System.out.printin(~Sum = "+ sum);

The body of the loop is executed 10 times forn = 1, 2, 10 each time adding the square of the
value of n, which is incremented inside the loop. The test condition may also be written as n < 11; the
result would be the same. Program 7.1 illustrates the use of the while for reading a string of characters
from the keyboard. The loop terminates when ¢ = "\ n’, the newline character.

Program 7.1 Using while loop

class WhileTest

{

public static void main{5tring args[])

{

{ Continued)

108

Program 7.1 (Continued)

StringBuffer string = new StringBuffer():
char c:

System.out.printin(“Enter a strimg ")

iry
{

while { (¢ = {char)System.in.read{)) != "\n")

{ .
string.append(c}; // Append character

1
}
catch (Exception e)

{
}

System. out _printin{® You have entered ... ")
system_out printin{string):

System out _printin{"Error in input™).

Given below is the output of Program 7.1:

Enter a string

Java 15 a true Object-Oriented Language
You have entered ...

Java 15 a true Object-Oriented Language

7.3 The do Statement

The while loop construct that we have discussed in the previous section makes a test condition before
the loop is executed. Therefore, the body of the loop may not be executed at all if the condition 15 not
satisfied at the very first attempt. On some occasions it might be necessary to execute the body of the
loop before the test 15 performed. Such situations can be handled with the help of the do statement.
This takes the form:

Initialization:
do

1

}

while (test condition):

Body of the loop

Om reaching the do statement, the program proceeds to evaluate the body of the loop first. At the end
of the loop, the rest condition in the while statement is evaluated. If the condition is true, the program
continues to evaluate the body hif the loop once again. This process continues as long as the condition

«BooiskiniMaNng and Looping: 109

is true. When the condition becomes false, the loop will be terminated and the control goes to the
statement that appears immediately after the while statement.

Since the test condition is evaluated at the bottom of the loop, the do....while construct provides an
exii-controlled loop and therefore the bady of the lop is always executed at least once.

Consider an example:

SUm = sum + 9
i = i+

while(sum < 40 || 1 < 10J;

The loop will be executed as long as one of the two relations 15 true. Program 7.2 illustrates the use
of do....while loops for printing a multiplication table.

Program 7.2 Printing muitiplication table using do....while loop

class DoWhileTest

{
public static void main(String argsf])

{
int row, column, ¥:
System.out.printin{ Multiplication Table ‘n");

row = 1:

do

|
column = 1;
do

{

¥y = row * column;
System.out . print(”
column = column + 1.

]
while (column == 3):

Sysem.out.printin{"n"):
row = row + 1;

+ ¥l

while (row <= 3):

}
}

110 Programming with Java: A Primer

Program 7.2 uses two do-while loops in nested form and produces the following output:
Multiplication Table

l 2 3
2 4 6
3 6 9

g

€ 7.4 The for Statement

The for loop is another entry-controlled loop that provides a more concise loop control structure. The
general form of the for loop is

for {(initialization . test condition ; 7i1ncrement)

4

}

The execution of the for statement 15 as follows:

1. Initialization of the control variables is done first, using assignment statements such as i = | and
count = (. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the fest condition. The test condition is a
relational expression, such as 1 < 10 that determines when the loop will exit. If the condition is
true, the body of the loop 15 executed; otherwise the loop 15 terminated and the execution
continues with the statement that immediately follows the loop.

3. When the body of the loop is executed, the control is transferred back to the for statement after
evaluating the last statement in the loop. Now, the control variable is incremented using an
assignment stement such as i = i + | and the new value of the control variable is again tested to
see whether it satisfies the loop condition. If the condition is satisfied, the body of the loop is
again executed. This process continues till the value of the control variable fails to satisfy the
test condition.

Consider the following segment of a program
for (x = 0 : x < = 9: x = x+1)

[
)

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections enclosed
within parentheses musi be separated by semicolons. Note that there is no semicolon at the end of the
increment section, x = x+1.

The for statement allows for negative increments. For example, the loop discussed above can be
written as follows:

for (x = 9 x > = 1[; x = x-1)
System.out.printin{x);

This loop i1s also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9. Note that

braces are optional when the body of the loop contains only one statement.

Body of the loop

System.out.printin{x):

Copyrighted maierial

m on ' ' i 111

Since the conditional test is always performed at the beginning of the loop, the body of the loop may
not be executed at all, if the condition fails at the start. For example,

for (2 = 9; %X < 9; x = x-1)

will never be executed beause the test condition fails at the very beginning itself.

Let us consider the problem of sum of squares of integers discussed in Section 7.2. This problem
can be coded using the for statement as follows:

sum =
for (n = 1: n == 10: n = n+l)
{
SUm = sum + n*n:
}
The body of the loop

Sum = sum + n*n;

is executed 10 times forn= 1, 2,, 10 each time incrementing the sum by the square of the value of n.
One of the important points about the for loop is that all the three actions, namely initialization,
testing and incrementing, are placed in the for statement itself, thus making them wisible to the

_ programmes and users, in one place. The for statement and its equivalent of while and do statements
are shown in Table 7.1.

o g . Table 7.1 ¢

of the TheeLoops

FLLT il L 1
for while do
for (n=1:n==10:++n) n=1 n=1
{ while (n==1{0} do
: { {
mn = n+l: n = f+l
| }

while (n==10)}:

Program 7.3 illustrates the use of for loop for computing and printing the “power of 2™ able.

Copyrighted material

112

 Procrammingwin dva: A Primer

Program 7.3 Computing the ‘power of 2" using for loop

Class ForTest

public static void main(5tring args[1)

{

long p:

int n:

double q:

System.out.printin{”2 to power -n n
p = 1

£ to power n");

for (n = 0; n < 10; ++n)

{

if (n
p = 1;
else

q:
System.out.printin(® *

}

}
)

03

=p * 2
1.0 7 (doublelp:
+q + " +n o+ "

Output of Program 7.3 would be:

2 to power - n

= o i D D OO e

2 o power n

. b 1 2
.25 2 a4
125 K 4
0625 4

.D3l25 5
015625 &
00390625 7
-00195313 B
.00195313 9

128
256
512

Additional Features of for Loop

The for loop has several capabilities that are not found in other loop construts, For example, more than
one variable can be initialized at a time in the for statement. The statements

p = 1:
for (n=0: n<l7: ++n)
can be rewnitien as
for (p=1. n=0: n<l7; ++n}"

MNotice that the initialization section has two parts p = | and n = 1 separated by a comma.

Copyrighted material

113

Like the initialization section, the increment section may also have more than one part. For example,
the loop

for (n=1. m=50: n<=m: n=n+1. m=m-=1)

is perfectly valid. The multiple arguments in the increment section are separated by commas,
The third feature is that the test condition may have any compound relation and the testing need not
be limited only to the loop control variable. Consider the example that follows:
sum = [;
for (7 =1, 1 < 20 &8 sum = 100: ++7)

The loop uses a compound test condition with the control variable i and external variable sam. The
loop 15 executed as long as both the conditions 1 < 20 and sum < 100 are true. The sum 15 evaluated
inside the loop.

It is also permissible to use expressions in the assignment statements of initialization and increment
sections. For example, a statement of the type

for (x = (m+n)/2; = > 0. x = =/2)
is perfectly valid,

Another unique aspect of for loop is that one or more sections can be omitted, if necessary. Consider
the following statements:

for (m != 100 ;)

m = m+h;

Both the initialization and increment sections are omitted in the for statement. The initialization has
been done before the for statement and the control variable is incremented inside the loop. In such
cases, the sections are left blank. However, the semicolons separating the sections must remain. If the
test condition is not present, the for statement sets up an infinite loop.

We can set up time delay loops using the null statement as follows:

for (j = 1000: j > 0;: j = j-1)

14 * Programing it Java: A rimer

This loop is executed 1000 times without producing any output; it simply causes a time delay.
Notice that the body of the loop contains only a semicolon, known as a empry statement. This can also
be written as

for (j=1000; j = 0: 3 = Jj-1);

This implies that the compiler will not give an error message if we place a semicolon by mistake at
the end of a for statement. The semicolon will be considered as an empry statement and the program
may produce some nonsense.

Nesting of for Loops

Mesting of loops, that is, one for statement within another for statement, is allowed in Java. We have
used this concept in Program 7.2, Similarly, for loops can be nested as follows:

—= for (i = 1; 1 = 10; ++i)
i
—= for (j =1; j <! =5§; ++])—
i
Inner loop Quter
R Loop
}

nnnnnnnnnn

The loops should be properly indented so as to enable the reader to easily determine which
statements are contained within each for statement.

A program segment to print a multiplication table using for loops 1s shown below:

for (row - 1;: row <= ROWMAX: ++row)

for {(column = 1: column <= COLMAX: ++column)

{

¥ = row * column
system.out.print(™ ~ + ¥):

|
System.out.printin{® = J:

The outer loop controls the rows while the inner one controls the columns,

* Decion Makig and Looping 11s

The Enhanced for Loop

The enhanced for loop, also called for each loop, is an extended language feature introduced with the
J2SE 5.0 release. This feature helps us to retrieve the array of elements efficiently rather than using
array indexes. We can also use this feature to eliminate the iterators in a for loop and to retrieve the
elements from a collection. The enhanced for loop takes the following form:

for (Type Identifier : Expression)

{

/fstatements .

|

where, Type represents the data type or object used; /denrifier refers to the name of a variable; and
Expression is an instance of the java.lang.lterable interface or an array.
For example, consider the following statements:

int numarry[3] = {56, 48, 79}:
for (int k=0: k<=3: k++)

{
if (numarray[k]=50 && numarray[k]<100)
{
System.out _printin{ The selected value 15 “+numarray[k]);
}
}

which 1s equivalent to the following code:

int numarray[3] = [56. 48, 79}:
for {int k:nummary)

if (k=50 && k=100)
{

}

System.out.printin{“The selected wvalue 15 “+k):

)

Thus, we can use the enhanced for loop to track the elements of an array efficiently. In the same
manner, we can track the collection elements using the enhanced for loop as follows:

Stack samplestack = new 5tack():
samplestack.pushinew Integer(56)):
samplestack.push{new Integer(4B8)):
samplestack.pushinew Integer(79)):
for{Object obj : samplestack)

{
}

System.out.printin(obj):

Copyrighted material

116

Program 7.4 Use of enhanced for loop to retrieve the elements of arrays

import Jjava.util. *:
class EnhanceForloop

public static void main(5tring args[])

{

System.out.printin{};
String

states[] = {"TamilNadu". "AndhraPradesh”. “UttarPradesh”,
“Rajasthan”}:

for{int i=0;i<states.length;i++)

{

System.out printIn("Standard for-loop : state name : “+states[1]):

System.out _printin{):

for(String i:states) ff enhanced for loop
{

System.out.printin{ Enhanced for-loop : state name : " + {):

System.out.printin();

ArrayList<String= cities = new ArraylList<String=():
cities.add("Delhi™);
cities.add("Mumbai™):
cities.add("Calcutta”™);
cities.add("Chennai”™):
System.out.printin();

for{int i=0:i=<cities.size();i++)

System.out.printin{ 5tandard for-loop : city name : “+cities.get(i)):
}
System.out.printin();

for{String city : cities) f{ enhanced for loop

system.out.printin{"Enhanced for-loop : city name @ “+city):
System_out_printin():
System. out.printin(”In Collections™):
System.out.printin();
printcollection{cities);

public static<AnyType> woid printcollection{Collection<AnyType= c)

}
}

for (AnyType val : c)
System.out.printin{val);

Copyrighted material

The output of the above program is as follows:

—iTd

117

Standard for-loop : state name : TamilNadu

Standard for-loop : state name : AndhraPradesh
Standard for-loop state name UttarPradesh
standard for-loop state name Rajasthan
Enhanced for-loop state name TamileNadu
Enhanced for-loop state name AndhraPradesh
Enhanced for-loop state name UttarPradesh
Enhanced for-loop state name Rajasthan
Standard for-loop city name Delhi

Standard for-loop city name Mumba i
Standard for-loop city name Calcutta
Standard for-loop city name Chennai
Enhanced far-loop city name Delhi

Enhanced for-loop city name Mumba i
Enhanced for-loop city name Calcutta
Enhanced for-loop city name Chennai

In Collections:

Delht
Mumba i
Calcutta
Chennat

@ 7.5 Jumps in Loops

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test condition.
The number of times a loop is repeated is decided in advance and the test condition is written to
achieve this. Sometimes, when executing a loop it becomes desirable to skip a part of the loop or to
leave the loop as soon as a certain condition occurs. For example, consider the case of searching for a
particular name in a list containing, say, 100 names. A program loop written for reading and testing the
names a 100 times must be terminated as soon as the desired name is found. Java permits a jump from
one statement to the end or beginning of a loop as well as a jump out of a loap.

Jumping Out of a Loop

An early exit from a loop can be accomplished by using the break statement, We have already seen the
use of the break in the switch statement. This statement can also be used within while, do or for loops
as illustrated in Fig. 7.2.

When the break statement is encountered inside a loop, the loop is immediately exited and the
program continues with the statement immediately following the loop. When the loops are nested, the
break would only exit from the loop containing it. That is, the break will exit only a single loop.

Copyrighted material

118

Exit| -v-eeua-n. Exit | coaaeaa...
from| . sseannnaas from SRR
oop| 2 foop |2 ¥l C::: o)
(a) (b)
for{...... — forf...couunn.)
1111111111 { " B E E E N NN EE
---------- et P
if (error) {)
break; | ...
Exit if (condition)
from| Exit [break;
1oop from Lo
Inmer L
loop }
(c) (d)

" Fig-7.2 Exiting a loop with break statement

Skipping a Part of a Loop

During the loop operations, it may be necessary 1o skip a part of the body of the loop under certain
conditions, For example, in processing of applications for some job, we might like to exclude the
processing of data of applicants belonging to a certain category. On reading the category code of an
applicant, a test is made to see whether his application should be considered or not. If it is not to be
considered, the part of the program loop that processes the application details is skipped and the
execution continues with the next loop operation.

Like the break statement, Java supports another similar statement called the continue statement.
However, unlike the break which causes the loop to be terminated, the continue, as the name implies,
causes the loop to be continued with the next iteration after skipping any statements in between. The
continue statement tells the compiler. “*SKIP THE FOLLOWING STATEMENTS AND CONTINUE
WITH THE NEXT ITERATION", The format of the continue statement is simply

Continue:

The use of the continue statement in loops 15 1llustrated in Fig. 7.3, In while and do loops, continue
causes the control to go directly to the test condition and then to continue the iteration process. In the
case of for loop, the incremenr section of the loop is executed before the rest condition is evaluated.

Copyrighted material

.-ﬂ'l _IH_‘.M. mlm. 1

119

while (test condition)

nnnnnnnnnn

do
{

FF(eennnnns)
continue;

} |:} while (test condition):

(a) (b)

—s fOr (initialization: test condition: increment)

(c)

Fig. 7.3 Bypassing and continuing in loops

7.6 Labelled Loops

In Java, we can give a label to a block of statements. A label is any valid Java variable name. To give a
label to a loop, place it before the loop with a colon at the end. Example:

loopl: for (..........)
{
}
A block of statements can be labelled as shown below:
blockl: {
block2: {
!
}

We have seen that a simple break staement causes the control to jump outside the nearest loop and
a simple continue statement restarts the current loop. If we want to jump outside a nested loops or to

Copyrighted material

120 P e

continue a loop that 1s outside the current one, then we may have to use the labelled break and labelled
continue statements. Example:

—= guter: for {(int m= 1: m<1l: m++)
for (int n =1; n<ll; n++)
System. out. print (" ™ + m*n);

if (n=m)
continue outer;

}

Here, the continue statement terminates the inner loop when n = m and continues with the next
iteration of the outer loop (counting m).

Another example:
—=Toopl: for (int § =0; 1 < 10; i++)
{
— loop2: while (x < 100)
E:,} { ¥ =1 * x;
alo if (Y = 500)
pl p break loopl;
12 e Jumping
} out of
1111111111 bﬂt‘h "':I':II:IS
SSECECEEREEES

Here, the label loopl labels the outer loop and therefore the statement
break loopl;

causes the execution to break out of both the loops. Program 7.4 illustrates the use of break and
continue statements.

Program 7.5 Use of continue and break statements
class ContinueBreak

{

public static void main{S5tring args[])
{
LOOP1 : for {int i = 1: i < 100: i++)
{

System.out . printin (")
if (i == 10} break:
for (int jJ = 1; j < 100; J++)
{

System.out.print (T * ");

(Continued)

Copyrighted material

W' 7 ' 121
Program 7.5 (Continued)
if (j==1)
continue LOOPL;

]

)
System.out .printin{ " Termination by BREAK™):
}
}
Program 7.5 produces the following output:
r
* *
+*
o # o "
* * * " &
* %* # #* #* &
r T * * * - o
#r * * * & * b3 *
& & .3 w w* o r wr o

Termination by BREAK

@i 7.7 Summary

The loops and conditional statements covered here and in Chapter 6 are the backbone of any
programming language. We dicussed in this chapter the following loop constructs:
* while structure

¢ do structure
for structure

They would be extremely useful in developing concise, compact and structured programs. We have
also seen how to use the break and continue statements to skip or jump out of a loop, if need be.

“Kay'ferms .
Looping, Infinite Loop, Entry-control, Exit-control, Nesting, Empty Statement, Enhanced for loop,
Labelled Loops, Continue, Break.

ReviEw QUESTIONS

7.1 Compare in terms of their functions, the following pairs of statements:
(a) while and do....while
(b} while and for
(¢} break and continue

Copyrighted material

122 " Frogreviming wih Jave: A Frimer

7.2 Analyze each of the program segments that follow and determing how many times the body of each loop

will be exccuted.
(a) x = 5; (by m = 1.
y = 50: da
while{x <= y) {
= oyix:
......... m = m+2
......... }
} while (m < 10)
{c) int 1; {(dy int m = 10;
for (i=0; i<=5; 1 = 1+2/3) intn=17
i while (m £ n == ()
R {
} m = m+l:
n = n+2;
]
7.3 Find errors, if any, in each of the following looping segments. Assume that all the variables have been
declared and assigned values.
(a) while (count != 10): {b) name = 0:
{ do { name = name + 1:
count = 1: System.out._printin{"My name 1s
Sum = sum + X John \n":}
count = count + 1; while (name = 1)
}
(e for (x=1, x>10: x = x+1) (dm=1:
{ n = 0:
o for (; m+n < 19; ++n)
e System.out.println{"Hello “n"):
I m = m+10:

7.4 What is an empty statement? Explain its usefulness.
7.5 Given a number, write a program using while loop to reverse the digits of the number. For example, the
number

12345
should be written as

54321
{Hint: Use modulus operator to extract the last digit and the integer division by 10 to get the n—1 digit
number from the » digit number).

7.6 The factorial of an integer m is the product of consecutive integers from | to m. That is factorial m =m! =
m*(m-1)*..*1.
Write a program that computes and prints a table of factonals for any given m.

Copyrighted maierial

1.7
7.8

1.9

710

Write a program o compute the sum of the digits of a given integer number,
The numbers in the sequence

1123581321 ...

are called Fibonacci numbers. Write a program using a deo....while loop to calculate and print the first m
Fibonacei numbers.

(Hint: After the first two numbers in the series, each number is the sum of the two preceding numbers).
Wnite a program to evaluate the following investment equation

V=Pl+"

and print the wables which would give the value of V for various combination of the following values of P,
r and n.

P 1000, 20060, 3000, ..., 10000
el o, 012, L, 020
n; 1,2, 3, ... 10

iHint: P is the principal amount and V is the value of money at the end of n years. This equation can be
recursively written as
V =P+
P=V
That is, the value of money at the end of first vear becomes the principal amount for the next year and so
onj.
Write a program to print the following outputs using for loops.
(a) 1 (b) £ 35 % 3% § ic) 1
§ 5§55 22
£ 58 3 31
5 S 4444
5 55555

[T S T Y
[T S Yy N
b e
LT

DEBUGGING EXERCISES

7.1

Following is the code for printing a list of number using while loop. Modify the code to achieve the result.
class numberlist

{
public static void main{String[] args)
{
int i=1:
while(i>=10)
{
System.out . printin{i};
T+
}
}

124

1.2

1.3

T4

1.5

Debug the given code for displaying the numbers 1 to 10 using do-while loop.

class doWhile
{
public static wvoid main{String[] args)
{
int num=1;:
do
{
System.out.printin(num):
mum+*+ ;
} while(num>=10):
}

!
Correct the code to rectify the compile time error thrown.

class Forloop

{
public static wvoid main{String[] args)
{
int num=10:
for{num>=]11)
{
num=num-1:
System.out.printin{num):
}
t
}

Program for calculating factorial of & number has been writen using For loop. Correct the code.
class factorial

public static void main(String[] args)

{

int num=0,fact=1;

for(int num=5;num=>=1;num--)

{

fact*=num:

1

System.out.printIn{"Factorial of 5 is "+fact);
}

}

For finding a value in an array, following code is available. Dioes the program generate correct output? 1
not, why? Modify the code.

class Findvalue

public static wvoid main(String[] args)

Copyrighted material

int[] array = {32, 87, 3, 589, 12, 1076, 2000, 8. &22. 127}:
int searchval = 12:
int 1 = 0O:

boolean found = false:
for{;i<array.length:i++)

if(array[1] == searchVal)

{
found = true:

}
}
if (found)
{

System.out .printin{“Found” + searchval + = at index =~ + 1i):
}
else
{

System.out . printin{search¥al + ~ not in the array”):
h

}
}

Copyrighted material

= Classes, Objects
and Methods

-
lﬁ 8.1 Introduction

Java is a true object-oriented language and therefore the underlying structure of all Java programs is
classes. Anything we wish to represent in a Java program must be encapsulated in a class that defines
the sfate and behavieur of the basic program components known as objects. Classes create objects and
objects use methods to communicate between them. That is all about object-oriented programming.

Classes provide a convenient method for packing together a group of logically related data items
and functions that work on them. In Java, the data items are called fields and the functions are called
methods. Calling a specific method in an object is described as sending the object a message.

A class 15 essentially a description of how to make an object that contains fields and methods. It
provides a sort of femplate for an object and behaves like a basic data type such as int. It 15 therefore
important to understand how the fields and methods are defined in a class and how they are used to
build a Java program that incorporates the basic OOP concepts such as encapsulation, inheritance and
polymorphism.

o~
(e
Ff 8.2 Defining a Class

As stated earlier, a class is a user-defined data type with a template that serves to define its properties.
Once the class type has been defined, we can create “variables™ of that type using declarations that are
similar to the basic type declarations. In Java, these variables are termed as instances of classes, which
are the actual objects. The basic form of a class definition is:

class classname [extends superclassname)

{

[fields declaration: 1]
[methods declaration:]

}

Everything inside the square brackets is optional. This means that the following would be a vahd
class definition:

class Empty
{
}

Because the body is empty, this class does not contain any properties and therefore cannot do
anything. We can, however, compile it and even create objects using it. C++ programmers may note
that there is no semicolon after closing brace.

classname and superclassname are any valid Java identifiers. The keyword extends indicates that
the properties of the superclassname class are extended to the classname class. This concept is known
as inheritance and is discussed in Section 8.11. Fields and methods are declared inside the body.

(-."
@ 8.3 Fields Declaration

Data 1s encapsulated in a class by placing data fields inside the body of the class definition. These
variables are called imstance variables because they are created whenever an object of the class is
instantiated. We can declare the instance variables exactly the same way as we declare local variables.
Example:
class Rectangle
{
int length;
int width:
}
The class Rectangle contains two integer type instance variables. It is allowed to declare them in
one line as

int length, width;

Remember these variables are only declared and therefore no storage space has been created in the
memory. Instance variables are also known as member variables,

@g 8.4 Methods Declaration

A class with only data fields (and without methods that operate on that data) has no life. The objects
created by such a class cannot respond to any messages, We must therefore add methods that are
necessary for manipulating the data contained in the class. Methods are declared inside the body of the
class but immediately after the declaration of instance variables. The general form of a method
declaration 1s

— |
128 :

e bl Ll =

type methodname (parameter-list)

}

Method declarations have four basic parts:

¢ The name of the method (methodname)

* The type of the value the method retums (nipe)

s A list of parameters (parameter-lisi)

¢ The body of the method

The fpe specifies the type of value the method would retumn, This could be a simple data type such

as imt as well as any class type. It could even be void type, if the method does not retum any value. The
methodname 15 a valid identifier. The paramerer list is always enclosed in parentheses. This list
contains variable names and types of all the values we want to give to the method as input. The
variables in the dist are separated by commas. In the case where no input data are required, the
declaration must retain the empty parentheses. Examples:

(int m, float =, float y} // Three parameters
{) // Empty list
The body actually describes the operations to be performed on the data. Let us consider the
Rectangle class agan and add a method getData () toat,

class Rectangle

4

method-body ;

int length;
int width: .
void ogetData (int x. int y¥) // Method declaration

length = x
width = y:
}
}

Mote that the method has a retum type of void because it does not return any value. We pass two
integer values to the method which are then assigned to the instance vanables length and width. The
getData method 1s basically added to provide values to the instance variables. Notice that we are able
o use directly lemgth and width inside the method.

Let us add some more properties to the class. Assume that we want to compute the area of the
rectangle defined by the class. This can be done as follows:

class Rectangle

int length, width: // Combined declaration
void getData(int x. int y)

129

{
length = x;
width = y:
}
int rectAreal) // Declaration of another method
{
int area = length * width:
return (area);
}

)

The new method rectArea() computes area of the rectangle and retums the result. Since the result
would be an integer, the return type of the method has been specified as int. Also note that the

parameter list is empty.
Remember that while the declaration of instance variables (and also local vanables) can be
combined as

int length, width;

the parameter list used in the method header should always be declared independently separated by
commas. That is,

void getData (int =x. ;.f] ! Incorrect

is illegal.

MNow, our class Rectangle contains two instance variables and two methods. We can add more
variables and methods, if necessary.

Most of the times when we use classes, we will have many methods and variables within the class.
Instance variables and methods in classes are accessible by all the methods in the class but a method
cannot access the vaniables declared in other methods. Example:

class Access

{

int =
void methodl()
{

int ¥
x=10: f legal
¥=x | o legal
}
void method2{)
':
nt 2
=5 ; {1 legal
z=10 : {1 legal
y=1 ; /1 illegal

130 Programeming wits Jeve: A Primer

F o
1*55 8.5 Creating Objects

As pointed out earlier, an object in Java is essentially a block of memory that contains space o store all
the instance variables. Creating an object is also referred to as instantiaring an object.

Objects in Java are created using the new operator. The new operator creates an object of the
specified class and returns a reference to that object. Here is an example of creating an object of type
Rectangle.

Rectangle rectl: // declare the object
rectl = new Rectangle(); /! instantiate the object

The first statement declares a variable to hold the object reference and the second one actually

assigns the object reference to the variable. The variable rectl is now an object of the Rectangle class
(see Fig. 8.1)

EEEEEE@Q rect! = new Rectangle {); |

‘(Fig:84); Creating object references
Both statements can be combined into one as shown below:

Rectangle rect]l = new Rectangle();

The method Rectangle() is the default constructor of the class. We can create any number of objects
of Rectangle. Example:
Rectangle rectl = new Rectanglel):
Rectangle rect2 = new Rectanmgle():
and =0 on.

It is important to understand that each object has its own copy of the instance variables of its class.
This means that any changes to the variables of one object have no effect on the variables of another. It
is also possible to create two or more references to the same object (see Fig. 8.2).

Copyrighted material

13

Fectangle R1 = new Rectangle |);
Rectangle R2 = R1;

R1

Both R1 and R2 refer to the same object,
Fig. 8.2 = Assigning one object reference variable fo another

@ 8.6 Accessing Class Members

Mow that we have created objects, each containing its own set of variables, we should assign values to
these variables in order to use them in our program. Remember, all variables must be assigned values
before they are used. Since we are outside the class, we cannot access the instance variables and the
methods directly. To do this, we must use the concerned object and the dot operator as shown below:

objectname. variablename = value:
ob jectname methodname(parameter-11st):

Here objectname is the name of the object, variablename is the name of the instance variable inside
the object that we wish to access, methodname 1s the method that we wish to call, and parameter-list 15
a comma separated list of “actual values” (or expressions) that must match in type and number with the
parameter list of the methodname declared in the class. The instance variables of the Rectangle class
may be accessed and assigned values as follows:

rectl.length = 15;
rectl.width = 10:

rect?.length = 20:
rect? width =]2
Mote that the two objects rect] and rect2 store different values as shown below:
recl rec?
rectl.length 16 rec2.length 20
rectl.width 10 rec2.width 12

This is one way of assigning values to the variables in the objects. Another way and more convenient
way of assigning values to the instance variables is to use a method that is declared inside the class.

132

In our case, the method getData can be used to do this work. We can call the getData method on any
Rectangle object to set the values of both length and width. Here is the code segment to achieve this.

Rectangle rectl = new Rectangle{): // Creating an object
rectl.getData(l5, 10): // Calling the method using the object

This code creates rect] object and then passes in the values 15 and 10 for the x and y parameters of
the method getData. This method then assigns these values to length and width variables respectively.
For the sake of convenience, the method 1s again shown below:

void getData (int x, int ¥)

{

length = x:
width = y:

}

MNow that the object rect] contains values for its variables, we can compute the area of the rectangle
represented by rectl. This again can be done in two ways.

o The first approach is to access the instance variables using the dot operator and compute the
arca, That 15,
int areal = rectl.length * rectl.width:
The second approach is to call the method rectArea declared inside the class. That is,
int areal = rectl.rectAreal): ff Calling the method
Program 8.1 illustrates the concepts discussed so far,

Program 8.1 Application of classes and obfects

class Rectangle
[

int length, width: i Declaration of vanables
votd getDatadint x_. int w) H Definition of method
length = x:
width = ¥:
}
int rectAreal) /! Definition of another method
{
int area = length * width:
return (area).
}
)
class RectArea £ Class with main method
{

public static woid main (String args[1)

{

int areal, areaZ;
Rectangle rectl = new Rectanglel): f ! Creating objects

{ Contired)

Classes, Objects and Methods 133

Program B.1 (Continued)
Rectangle rectZ = new Rectanglel):
Rectl.length = 15; /i Accessing variables
rectl.width = 10:
areal = rectl.length * rectl width:

rect?. getData (20.12): /{ Accessing methods
areal = rect?.recthAreal):

System.out.printin{ Areal = + dreal};

System.out . printin{ Areaz = ° + areal);
I
}
Program 8.1 would output the following:
Areal = 150
Aread = 240

fg 8.7 Constructors

We know that all objects that are created must be given initial values. We have done this earlier using
two approaches. The first approach uses the dot operator to access the instance variables and then
assigns values to them individually. It can be a tedious approach to initialize all the variables of all the
objects.

The second approach takes the help of a method like getData to initialize each object individually
using statements like,

rectl. getData(l5.10);

[t would be simpler and more concise to initialize an object when it is first created. Java supports a
special type of method, called a consiructor, that enables an object 1o initialize itsell when it is created.

Constructors have the same name as the class itself. Secondly, they do not specify a retumn type, not
even void. This is because they return the instance of the class itself.

Let us consider our Rectangle class again. We can now replace the getData method by a constructor
method as shown below:

class Rectangle

{
int length;
int width;
Rectangle(int x. int y) // Constructor method
{
length = x;
width = y;
}
int rectAreal)

{

Copyrighted material

134 Programming with Java: A Primer
return (length * width):
}
Program 8.2 illustrates the use of a constructor method to initialize an object at the time of its
creation.

Program 8.2 Application of constructors

class Rectangle
{
int length, width;
Rectangle (int =, int y) /{ Defining constructor
{
length
width

X:
¥

%nt rectAreal)

i

}

return {length * width);

)

class RectangledArea

{
{

public static void main (string args[1)

Rectangle rectl = new Rectangle(15, 10): // Calling constructor
int areal = rectl.rectAreal):
System,out,printin{ Areal = "+ areal):

Output of Program 8.2;
Areal = 150

|F..L .
“‘f 8.8 Methods Overloading

In Java, it is possible to create methods that have the same name, but different parameter lists and
different definitions. This is called merhod overloading. Method overloading is used when objects are
required to perform similar tasks but using different input parameters. When we call a method in an
object, Java matches up the method name first and then the number and type of parameters to decide
which one of the definitions to execute. This process is known as polymorphism.

To create an overloaded method, all we have to do is to provide several different method definitions
in the class, all with the same name, but with different parameter lists. The difference may either be in
the number or type of arguments. That is, each parameter list should be unique. Note that the method's
return type does not play any role in this. Here is an example of creating an overloaded method.

Copyrighted material

Classes, Objects and Methods 135

class Room

float length:
float breadth;
Room{ float x. float w) ! constructor]
{
length = x;
breadth = ¥
I-
Room{float x) H eonstructor?
!
length = breadth = x;

. o o
L dred

return (length * breadth

Here, we are overloading the constructor method Roomi{). An object representing a rectangular
room will be created as

kKoom room] = new Koom{Zo. 0. 15. 00 {1 using constructor]

On the other hand, if the room is square, then we may create the corresponding object as

al

Room roomd = new Room (20.0) '/ using constructor2

F 8.9 Static Members

We have seen that a class basically contains two sections. One declares variables and the other declares
methods, These vanables and methods are called instance variables and ifnstance methods, This 18
because every time the class is instantiated, a new copy of each of them is created. They are accessed
using the objects (with dot operator).

Let us assume that we want to define a member that is common to all the objects and accessed
without using a particular object. That is, the member belongs to the class as a whole rather than the
objects created from the class, Such members can be defined as follows:

static int count:
static 1nt max{int x, int ¥)
The members that are declared static as shown above are called sratic members, Since these
wmbers are associated with the class itself rather than individual objects, the static vanables and static
sthods are often referred o as clasy variables and clasy methods in order to distinguish them from
T counterparts, instance varables and instance methods.
atic vanables are used when we want to have a variable common to all instances of a class. One of
st common examples 15 to have a variable that could keep a count of how many objects of a class
wen created. Remember, Java creates only one copy for a static vanable which can be used even
‘&8 15 never actually instantiated.

136 Programming with Java: A Primer

Like static vanables, static methods can be called without using the obyects. They are also available
for use by other classes. methods that are of general utility but do not directly affect an instance of that
class are usually declared as class methods. Java class libranies contain a large number of class methods.
For example, the Math class of Java library defines many static methods to perform math operations
that can be used in any program. We have used earlier statements of the types.

flaat 1 Mat h

['he method sqrt 15 a class method (or static method) defined in Math class
We can define our pwn static methods as shown in Program H.3,

Program 8.3 Defining and using static members

class Mathoperatior
i
static i fiu i Flaat y
|'_F |"l
static T1ioal] 1 Float x f t ¥
Class Mathapg atiorn

Cutput of Program 8.3:

MNote that the static methods are called using class names. In fact, no objects have been created for
use. Static methods have several resirictions:

. They can only call other static methods.

2. They can only access static data.

3. They cannot refer to this or super in any way.

F

8.10 Nesting of Methods

We discussed earlier that a method of a class can be called only by an object of that class (or class itself
in the case of static methods) using the dot operator. However, there is an exception to this. A metho
can be called by using only its name by another method of the same class. This is known as nesting «
miethods,

Classes, Objects and Methods 137 |

Program 8.4 illustrates the nesting of methods inside a class. The class Nesting defines one
constructor and two methods, namely largest() and display(). The method display() calls the method
largest() to determine the largest of the two numbers and then displays the resuli.

Program 8.4 Nesting of methods

class MNesting

int m, n:
Nesting (int x. 1int y) {{ constructor method
m = X:
n = 4
!
int largest()
1T (m >= nJ |
returnim); |
else
returnin)

void display()

int large = largest{): // calling a method
system.out.printin (“Largest value = ~ + large);
}
class NestingTest
public static void main{String args[1)
Mesting nest = new Nestingosl, 40}

nest.display(

Output of Program ¥.4 would be:

Largest wvalue = &
A method can call any number of methods. It is also possible for a called method to call another
ethod. That is, method]l may call method2. which in tum may call method3.

.
ﬁ 8.1 Inheritance: Extending a Class

usability is yet another aspect of DOP paradigm. It is always nice if we could reuse something that
=ady exists rather than creating the same all over again. Java supports this concept. Java classes can
eused in several ways. This 15 basically done by creating new classes, reusing the properties of

138 Programming with Java: A Primer

existing ones. The mechanism of deriving a new class from an old one is called inheritance. The old
class is known as the base class or super class or parent ¢lass and the new one is called the subclass or
derived class or child class.

The inhentance allows subclasses to inhenit all the vanables and methods of their parent classes.
Inheritance may take different forms:

Single inhentance (only one super class)

Multiple inheritance (several super classes)

Hierarchical inheritance (one super class, many subclasses)
Multilevel inhentance (Denived from a denved class)

These forms of inhentance are shown in Fig. 8.3, Java does not directly implement multiple
inheritance. However, this concept is implemented using a secondary inheritance path in the form of
imterfaces. Interfaces are discussed in Chapter 10.

— >
>

s o o

{a) Single inhertance (b} Heerarchical inheritance

A A B

3

o
L B j
C o]

() Multibevel inberitancos (d) Mutipbe inharitanos

Fig.8.3 Forms of inhentance

Defining a Subclass

A subclass is defined as follows:

class subclassname extends superclassname I
{

variables declaration;

methods declaration;
I

The keyword extends significs that the properties of the superclassmame arc cxlcndcdl
sibelazsrnanie, The subelass will now contain its own variables and methods as well those-

superclass. This kind of situation occurs when we want to add some more properties 1o an existing
class without actually modifying it. Program 8.5 illustrates the concept of single inheritance.

Program 8.5 Application of single inheritance

class Room

{
int length;
int breadth:
Room{int x. int ¥)

{
Tength = x;
breadth = y;
|
int area()
{
return (length * breadth):
]
}
class BedRoom extends Room /{ Inheriting Room
{
int height;
BedRoom{int x. int y. int 2z}
{
superi(x, ¥) /7 pass values o superclass
height = Zz:
}
int volume()
{
return {length * breadth * height);
}
}
class InherTest
{
public static woid main{Steing args[1)
{
BedRoom rooml = new BedRoom{14.12. 10):
int areal = rooml.areal);: /I superclass method
int volumel = rooml.volumel J: /! bhaseclass method
System.out.printin{~Areal = ~+ areal);:
System.out.printin(~Volume = ~+ volume):
|
}
The output of Program 8.5 is:
Areal = 168

Volumel = 16B0

Copyrighted material

140 Programming with Java: A Primer

The program defines a class Room and extends it to another class BedRoom. Note that the class
BedRoom defines its own data members and methods. The subclass BedRoom now includes three
instance variables, namely, length, breadth and height and two methods, area and volume.

The constructor in the derived class uses the super keyword to pass values that are required by the
base constructor. The statement

BedRoom rooml = new BedRoom(1 .12, 10):
calls first the BedRoom constructor method, which in tum calls the Room constructor method by
using the super keyword.

Finally, the object room1 of the subclass BedRoom calls the method area defined in the super class
as well as the method volume defined in the subclass itself.

Subclass Constructor

A subclass constructor is used to construct the instance variables of both the subclass and the
superclass. The subclass constructor uses the keyword super to invoke the constructor method of the
superclass. The keyword super is used subject to the following conditions.
s super may only be used within a subclass constructor method
* The call to superclass constructor must appear as the first statement within the subclass
constructor
= The parameters in the super call must match the order and type of the instance variable declared
in the superclass.

Program 8.5 illustrated the use of super() method for passing parameters to a superclass.
Multilevel Inheritance

A common requirement in object-oriented programming is the use of a derived class as a super class.
Java supports this concept and uses it extensively in building its class library. This concept allows us to
build a chain of classes as shown in Fig. 8.4.

Grandfathar A Superciass

i
Father | B Inlermediate superclass
Chald || c Subclass

Fig. 8.4 - Multilevel inheritance

The class A serves as a base class for the derived class B which in turn serves as a base class for the
derived class C. The chain ABC is known as inheritance path.
A denved class with multilevel base classes 13 declared as follows.

class A

Copyrighted maierial

Wnﬂm 141

class B extends A 7/ First level

class C extends B // Second level
{

}

This process may be extended to any number of levels, The class C can inherit the members of both
A and B as shown in Fig. 8.5,

class C mambears

class B mambers
class A mambars

w C contains B which contains A

Hierarchical Inheritance

Another interesting application of inheritance is to use it as a support to the hierarchical design of a
program. Many programming problems can be cast into a hierarchy where certain features of one level
are shared by many others below the level. As an example, Fig. 8.6 shows a hierarchical classification

of accounts in a commercial bank. This is possible because all the accounts possess certain commaon
features.

142

I L

“{Fig. 88 - Hierarchical classification of bank accounts

L

= 8.12 Overriding Methods

We have seen that a method defined in a super class is inherited by its subclass and is used by the
objects created by the subclass. Method inheritance enables us to define and use methods repeatedly in
subclasses without having to define the methods again in subclass.

However, there may be occasions when we want an object to respond to the same method but have
different behaviour when that method 15 called. That means, we should override the method defined in
the superclass. This is possible by defining a method in the subclass that has the same name, same
arguments and same return type as a method in the superclass. Then, when that methods is called, the
method defined in the subelass is invoked and executed instead of the one in the superclass. This is
known as overriding. Program 8.6 illustrates the concept of overriding. The method display() is
overriden.

Program B.6 [Wustration of method overriding

class Super
int x:
super{int x)
{ this.x = x:
::r:ﬂd display() {{ method defined

System. out.printin(”Super x = " + x);:

(Continued)

Copyrighted material

143

Program B.6 | Convinued)

Class Sub extends Super
{

int v
sub (int x, int y)
{
supar(x);
this.y = ¥;
}
void display() {1 method defined again
n'
aystem.out . printini "Super x = 7 + Xx];
system.out . printin(Sub y = = + yJ;

}

class OverrideTest
{
public static void main{String args[1}

{
Sub 51 = new Sub(100,200);
s1.display(}:

Chutput of Program 8.6:
super x = 100
Sub y = 200
MNote that the method display {) defined in the subclass is invoked.

@ 8.13 Final Variables and Methods

All methods and vanables can be overndden by default in subclasses. If we wish to prevent the
subclasses from overriding the members of the superclass, we can declare them as final using the
keyword final as a modifier. Example:
final int SIZE = 100:
final void showstatus{) {..........]
Making a method final ensures that the functionality defined in this method will never be altered in

any way. Similarly, the value of a final variable can never be changed. Final vaniables, behave like class
variables and they do not take any space on individual objects of the class.

@ 8.14 Final Classes

Sometimes we may like to prevent a class being further subclasses for security reasons. A class that
cannot be subclassed is called a final class. This is achieved in Java using the keyword final as follows:

144 Programming with Java: A Primer
final class Aclass {..........}
final class Bclass extends Someclass {.......... 1
Any attempt to inhent these classes will cause an error and the compiler will not allow it
Declaring a class final prevents any unwanted extensions to the class. It also allows the compiler 1o
perform some optimisations when a method of a final class 15 invoked.

€ 8.15 Finalizer Methods

We have seen that a constructor method 15 used to imitialize an object when it is declared. This process
is known as initialization. Similarly, Java supports a concept called finalization, which is just opposite
to initialization. We know that Java run-time is an automatic garbage collecting system. It automatically
frees up the memory resources used by the objects. But objects may hold other non-object resources
such as file descnptors or window system fonts. The garbage collector cannot free these resources. In
order to free these resources we must use a finalizer method. This is similar to destructors in C++,

The finalizer method 15 simply finalize() and can be added to any class, Java calls that method
whenever it is about to reclaim the space for that object. The finalize method should explicitly define
the tasks to be performed.

-

K

‘ 8.16 Abstract Methods and Classes

We have seen that by making a method final we ensure that the method is not redefined in a subclass.
That is, the method can never be subclassed. Java allows us to do something that is exactly opposite o
this. That is, we can indicate that a method must always be redefined in a subclass, thus making
overriding compulsory. This is done using the modifier keyword abstract in the method definition.
Example:

abstract class Shape

abﬁtraﬁt void draw(}:

When a class contains one or more abstract methods, it should also be declared abstract as shown in
the example above.
While using abstract classes, we must satisfy the following conditions:

= We cannot use abstract classes to instantiate objects directly. For example,
Yhape 5 = new Shape()
is illegal because shape is an abstract class.

The abstract methods of an abstract class must be defined in its subclass.
We cannot declare abstract constructors or abstract static methods.

Copyrighted material

s
l@ 8.17 Methods with Varargs

Varargs represents variable length arguments in methods, which is one of the features introduced by
I28E 5.0. It makes the Java code simple and flexible. Varargs takes the following form:

<3gccess speciftier» <static> wvoid meéethod-name(Object...arguments)
|

}

In the above syntax, the method contains an argument called varargs in which Object is the type of
an argument, ellipsis (...) is the key 1o varargs and argumenis is the name of the variable.

Thus, varargs allows us to declare a method with the unspecified number of parameters for a given
argument. The varargs must be the final argument in the argument list of a method. Varargs is identified
by the type of an argument followed by the ellipsis (...) and the name of a vanable.

For example, consider the following declaration of the method, sample, which contains the same
type of arguments. String is used for more than one arguments.

public wvoid sample (5tring username. S5tring password, 5tring mailid);
The above code is an example for simple method declaration. The above method declaration can be
replaced by varargs, as shown below:
public void sample(String ... var_name):
Where String ... var_name specifies that we can pass any number of String arguments to the sample
method. The following declarations invoke the constructor method of the class, which contains the
method, sample:

public void method name(String user, String pword):

public void method name{String user, 5tring pword, 5tring mailid):
or

public void method_name(3tring user, 5tring pword, 5tring mailid.
stringdesc);

It is possible to use the variable length argument as a final argument to other type of constructors.
Hence, in the above declaration, the third line can be rewritten as:

public void method name(String wser, 5tring ... var arg).

Program 8.7 Nlustrates the use of varargs to print the String value passed as an argument
to a method

class Exampleprg
Exampleprg(String... person)
for{5tring name: person)

System.out.printin{“Hello + name);

}
}

Copyrighted maierial

146

public static void main(String args[])

|
Exampleprg(“John™, “David™. “5uhel™);
}
}

Program .7 produces the following output:
Hello John
Hello David
Hello Suhel

At compile time, String... var_arg is converted to String [| var_arg. We can also pass an amay of
strings to the method, as follows:

class Exampleprg
i
string strl, stri;
Exampleprg(String[] vargs)
{
for{int 1=0: i<vargs.length; i++)
{
stri=vargs[i]:
System, out.printin{ Hello “+strl+"_"):
}
)
public static void main{String[Jlargs)

{

}
ll

Exampleprg ex=new Exampleprg{args):

Compile and run the above program as shown below:
Javac Exampleprg John David Suhel
This code yields the same output as the above program.

Note : Varargs does not generate any compile time errors even if an empty argument is passed as a
parameter to a method.

@ 8.18 Visibility Control

We stated earlier that it is possible to inherit all the members of a class by a subclass using the keyword
extends. We have also seen that the vanables and methods of a class are visible everywhere in the
program. However, it may be necessary in some situations to restrict the access to certain variables and
methods from outside the class. For example, we may not like the objects of a class directly alter the
value of a variable or access a method. We can achieve this in Java by applying visibility modifiers to

Classes, Objects and Methods 147
the instance variables and methods. The visibility modifiers are also known as access modifiers. Java

provides three types of visibility modifiers: publie, private and protected. They provide different
levels of protection as described below.

public Access

Any variable or method is visible to the entire class in which it is defined. What if we want to make it
visible to all the classes outside this class? This is possible by simply declaring the vaniable or method
as public. Example:

publie int number:

public wvoid sum{) {._._......}

A wvariable or method declared as public has the widest possible visibility and accessible

everywhere. In fact, this is what we would like to prevent in many programs. This takes us to the next
levels of protection.

friendly Access

In many of our previous examples, we have not used publie modifier, yet they were still accessible in
other classes in the program. When no access modifier is specified, the member defaults to a limited
version of public accessibility known as “friendly™ level of access.

The difference between the “public™ access and the “friendly” access is that the public modifier
makes fields visible in all classes, regardless of their packages while the friendly access makes fields
visible only in the same package, but not in other packages. (A package is a group of related classes
stored separately. They are explored in detail in Chapter 11). A package in Java is similar to a source
file in C.

protected Access

The visibility level of a “protected™ field lies in between the public access and frendly access. That is,
the protected modifier makes the fields visible not only to all classes and subclasses in the same
package but also to subclasses in other packages. Note that non-subclasses in other packages cannot
access the “protected™” members.

private Access

private fields enjoy the highest degree of protection. They are accessible only with their own class.
They cannot be inherited by subclasses and therefore not accessible in subclasses. A method declared
as private behaves like a method declared as final. It prevents the method from being subclassed. Also
note that we cannot override a non-private method in a subclass and then make it private.

private protected Access

A field can be declared with two keywords private and protected together like:
private protected int codeNumber:
This gives a visibility level in between the “protected™ access and “private™ access. This modifier
makes the fields visible in all subclasses regardless of what package they are in. Remember, these

fields are not accessible by other classes in the same package. Table 8.1 summarises the visibility
provided by vanous access modifiers.

1 - '] . 5 ¢
“ g 1

Table 8.1 \"I-Ilhillty' of Field in a Class

public protected ‘ [friendly private | private

| fdefauli) protected |
Access :
location ¥

Same class

| Subclass in
| same |'|:||.|-. 1gE

Diher classes

in satme package
Subclass in

other packages
Non-subclasses
in other packages

Rules of Thumb

The details discussed so far about field visibility may be quite confusing and seem complicated.
Ciiven below are some simple rules for applying appropriate access modifiers

Use public if the field is to be visible everywhere.

Use protected if the field is to be visible everywhere in the current package and also subclasses
in other packages.

Use “default” if the field is to be visible everywhere in the current package only.

Use private protected if the ficld is to be visible only in subclasses, regardless of packages.
Use private if the field is mof to be visible anywhere except in its own class.

=

Ll

lg 8.19 Summary

Classes, objects, and methods are the basic components used in Java programming. The concept of
classes is at the root of Java's design. We have discussed in detail the following in this chapter:

How to define a class

How to create objects

How to add methods to classes
How to extend or reuse a class
How to write application programs

We have also discussed various features that could be used to restrict the access o certain variables
and methods from outside the class. The concepts discussed here provides the basics of writing not
only standalone application programs but also applets for use on Internet.

Copyrighted material

Classes, Objects and Methods 14

!“. Key Terms

Classes, Objects, Methods, Fields, Instance, Template, Inheritance, Subclass, Superclass, Iutunlunn,
Dot operator, Constructor, Overloading, Overriding, Static, Final, Nesting, Visibility Control, Visibility
Modifiers. Public Access, Friendly Access, Private Access, Protected Access, Package, Varargs.

B.1 What is class? How does it accomplish data hiding?

8.2 How do classes help us to organise our programs?

B.3 Whai are the three parts of a simple, empty class?

B4 What are objects? How are they created from a class?

8.5 How is a method defined?

B.6 When do we declare a member of a class static?

8.7 What is a constructor? What are its special properties?

B8 How do we invoke a constructor?

8.9 What is inheritance and how does it help us create new classes quickly?

B. 10 Describe different forms of inheritance with examples.

8.11 Describe the syntax of single inheritance in Java.

B.12 Compare and contrast overloading and overmding methods.

B.13 When do we declare a method or class final?

B.14 When do we declare a method or class abstract?

B.15 Driscuss the different levels of access protection available in Java.

8.16 Design a class to represent a bank account. Include the following members:
Data members

» Name of the depositor

® Apgcount number

» Type of account

* Halance amount in the account

Methods

To assign initial values

To deposit an amount

To withdraw an amount after checking balance
To display the name and balance

8.17 Modify the program of Question B.16 1o incorporate a constructor to provide initial values.

818 Assume that a bank maintains two kinds of account for its customers, one called savings account and the
other current account. The savings account provides compound interest and withdrawal facilities but no
cheque book facility. The current account provides cheque book facility but no interest. Current account
holders should also maintain a minimum balance and if the balance falls below this level, a service charge
is imposed.

Create a class Account that stores customer namse, account number and type of account. From this derive
the classes Curr-acct and Sav-acct to make them more specific to their requirements. Include the
necessary methods in order to achieve the following tasks:

(a) Accept deposit from a customer and update the balance.

(b} Dhsplay the balance.

|

Copyrighted material

15 Prgramming i o e
(c) Compute and deposit interest,
{d) Permit withdrawal and update the balance.
(¢) Check for the minimum balance, impose penalty, if necessary, and update the balance.

Do not use any constructors. Use methods to initialize the class members.

8.19 Modify the program of Question 8. 18 to include constructors for all the three classes.

B.20 An educational institution wishes to maintain a database of its employees. The database is divided into a
number of classes whose hierarchical relationships are shown in Fig. 8.7, The figure also shows the
minimum information required for each class. Specify all the classes and define methods to create the

E.1 Correct the error in the following code.
class VarName

public static void main(String(] args)
{

}

System.out .printin{ Hellow World!™);

Copyrighted material

L|- i ! . . -IIIE 151
8.2 Following code should return the name when the method getName() is called. Modify the code to achieve
the desired result.
class ReturnValue

{
public String name="Tom™:
public String getName()

System_out.printin(“Name 1s: “+name):

public static wvoid main{String[] args}
{

Returnvalue rv=new ReturnValuel):
rv.getName():

}
}

8.3 Debug the code to rectify the compile time error thrown by the given code.
class NoDefConst

NoDefConst(String s5)

{
System.out.printin{ - fsdf")
}
class SubClass extends MoDefConst
{
}

B4 Provide the missing statement in the following code which provides overriding of methods?
dbstract class Figure

{

int x, ¥.
void changePosition{int newX. int newY) {}
abstract wvoid draw();

}
class Circlelbject extends Figure

{
void draw()
{
System.out.printin{"Draw Method Called™}:
}
}
tlass RectangleObject extends Figure
{

void changePosition(int newX. int newY)
{
System_out.printin(“Change Position Method Called”):

Copyrighted material

}
8.5 Correct the code for overloading methods?

public class Figure

{
public String draw{String s)

{

return “Figure Drawn":

public void draw(5tring s) {}
public woid draw(double f) {}

}

Copyrighted material

Arrays, Strings
and Vectors

@ 9.1 Introduction

An armay 1s a group of contiguous or related data items that share a common name. For instance, we can
define an array name salary to represent a set of salaries of a group of employees. A particular value is
indicated by writing a number called index number or subscript in brackets after the array name. For
example,

salary[10]

represents the salary of the 10th employee. While the complete set of values 15 referred to as an array,
the individual values are called elements. Arrays can be of any variable type.

The ability to use a single name to represent a collection of items and to refer to an item by specifying
the item number enables us to develop concise and efficient programs. For example, a loop with the
subscript as the control variable can be used to read the entire armay, perform calculations and, print out
the results,

In this chapter, we shall discuss in depth how arrays are created and used. We shall also discuss two
related concepts, namely stnings and vectors which are often used in Java programs.

‘ 9.2 One-dimensional Arrays

A list of items can be given one variable name using only one subscript and such a variable is called a
single-suhscripted vanable or a one-dimensional array. In mathematics, we often deal with variables
that are single-subscripted. For instance, we use the equation,

154 ‘Programming with Java: A Primer

to calculate the average of n values of x. The subscripted variable x, refers to the ith element of x. In
Java, single-subscripted variable x, can be expressed as

x[1]. x[2]. x[3] x[n]
The subscript can also begin with number 0. That is
x[0]

is allowed. For example, if we want to represent a set of five numbers, say (35, 40, 20, 57, 19), by an
array variable number, then we may create the variable number as follows

int number [] = new int[5]:
and the computer reserves five storage locations as shown below

number |0

number [1]

number [2]

mumber [3]

mumbaer [4]

The values to the array elements can be assigned as follows:

number[0] = 35:

number[1] = 40:

number[2] = 20;

number[3] = &7

number(4] = 19:

This would cause the array number to store the values shown as follows:

rambar [a5
ruminer 1) 40
rismibar [2] 20
miambar [3] &7
numiber [£) 18

Note: In Java, subscripts start with the value 0.

Copyrighted maierial

These elements may be used in programs just like any other Java varnable. For example, the
following are valid statements:

aNumber = number[0] + 10;

number[4] = number[0] + number[2]:
number(2] = x[5] + y[10]:
value[6] = number[i] * 3:

The subscript of an array can be integer constants, integer vanables like i, or expressions that yield
integers.

IF"L'_
¥
{g 9.3 Creating an Array

Like any other vanables, arrays must be declared and created in the computer memory before they are
used. Creation of an array involves three steps:

1. Declaring the array

2. Creating memory locations

3. Putting values into the memory locations.

Declaration of Arrays
Arrays in Java may be declared in two forms :
Form |
type arrayname[1:
Fowm 2
type [1 arrayname;
Examples:
int number[1;
float average[1:
int[] counter;
float[] marks ;

Remember, we do not enter the size of the arrays in the declaration,

Creation of Arrays

After declaring an array, we need to create it in the memory. Java allows us to create arrays using new
operator only, as shown below:

=

I_dr"ra_rndrm - new Lypelsize]:

Examples:
number = new int[5]:
average = new float[10]:

These lines create necessary memory locations for the arrays number and average and designate
them as int and fleat respectively. Now, the variable number refers to an armay of 5 integers and
average rcfers to an array of 10 floating point values.

Copyrighted material

156 Programming with Java: A Primer
It is also possible to combine the two steps—declaration and creation—into one as shown below:
int number[] = new int[5];
Figure 9.1 illustrates creation of an array in memory.

Staternant Result
nasmier
int number [1; —
pidnts
niyhers
number
fnumber = new int [5]: ™
peoints to
it objesct
numbar [0
nusmiser [1]
riumbear [2]
nusmisar [3]
ramibser [4]

“Fig.9.4: " Creation of an array in memory
Initialization of Arrays

The final step is to put values into the array created. This process is known as initialization. This is
done using the array subscripis as shown below.

arrayname[subscript] = value :

Example:
number[0] = 35;
number[1] = 40;

number[4] = 19;
Note that Java creates arrays starting with the subscript of 0 and ends with a value one less than the
size specified.
Unlike C, Java protects arrays from overruns and underruns. Trying to access an array bound its
boundaries will generate an error message.

We can also ininialize arrays automatically in the same way as the ordinary variables when they are
declared, as shown below:

type arrayname[] = {)ist of values};

The array initializer is a list of values separated by commas and surrounded by curly braces. Note
that no size is given. The compiler allocates enough space for all the elements specified in the list.

Copyrighted material

- Aap Stngs and Vecors 157
Example:

int numberl 1 = {35, 40, 20, 57, 19}.
It is possible to assign an array object o another. Example:
int a[] = {1. 2. 3}:
int b[J:
b=a;
are valid in Java. Both the arrays will have the same values.
Loops may be used to initialize large size arrays. Example:

for(int 1= 0: § < 100: i++)

1f{1 < 50)
sum[1] = 0.0:
glse
sumfi] = 1.0;

The first fifty elements of the array sum are initialized to zero while the remaining are initialized to
1.0

Consider another example as shown below:
for{int x = 0; x < 10: x++)
average[x] = (float)x:
This loop initializes the array average to the values 0.0 to 9.0.

Array Length

In Java, all arrays store the allocated size in a variable named length. We can obtain the length of the
array a using aJlength. Example:
int aSize = a.length:

This information will be useful in the manipulation of arrays when their sizes are not known.
Program 9.1 illustrates the use of an array for sorting a list of numbers.

Program 9.1 Sorting a list of numbers

class Numbersorting

{
public static void main(53tring args[1)
{
int number[] = { 55. 40, B80. 65. 71 }:
int n = number . length: I Array length
System_ out.print(“Given list : °):
for (int i=0; 1 < n; 1++)

[Coneimmied)

Copyrighted material

158 Prograrmridg Wil Java: ATPHITS:

Program 9.1 (Continued)

{
System out.print(™ ~ + number[i]);

}
System.out . printIn{"/n"):
/f Sorting begins
for (int 1 =0; 1 <n; 1++)
1
for (int j = i+1: J < n: j++0
{
if (number[i] = number[j])
{
A1 Interchange values
int temp = number[i];
numoer[i1] = number[)":
number[j] = temp:
}

I /f Sorting ends
System.out print(~Sorted 1ist : °):
for {(int 1 =0; 1 € n; i++)

{
System.out.print(™ ° + number[i]);
)
System.out.printin{™)
}
}
Program 9.1 displays the following output:
Given list : 55 40 B0 65 71
Sorted 1ist : 80 71 65 55 40
I,H_':

iég 9.4 Two-dimensional Arrays

So far we have discussed the array variables that can store a list of values. There will be situations
where a table of values will have to be stored. Consider the following data table, which shows the value
of sales of three items by four salesgirls:

Iteml Item2 Item3
Salesgirl #1 310 275 365
Salesgirl #2 210 190 325
Salesgirl #3 405 235 240
Salesgirl #4 260 300 380

* Arays Sngs and veciors 159

The table contains a total of 12 values, three in each line. We can think of this table as a matrix

consisting of four rows and three columns. Each row represents the values of sales by a particular
salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as v, Here

v denotes the entire matrix and v;; refers to the value in the ith row and jth column. For example, in the

above table v,; refers to the value 325. Java allows us to define such tables of items by using two-
dimensional arrays. The table discussed above can be represented in Java as

v[4]1[3]
Two dimensional arrays are stored in memory as shown in Fig. 9.2. As with the single dimensional
arrays, each dimension of the array is indexed from zero to its maximum size minus one; the first index
selects the row and the second index selects the column within that row,

column 0 column 1 colummn 2
(0] 191 (0] (1] [0} [2]
Rowl) — = 3 275 365 |
[0] 111 [1] 11 [2]
Row1 ————— = 210 180 325
(2] 10] (2] 11) [2] [2)
Row2 —————= 405 235 240
3] (0] [31 1] (31 2]
Row3d —————= 260 300 380

W Representation of a two-dimensional array in memory
For creating two-dimensional arrays, we must follow the same steps as that of simple arrays. We
may create a two-dimensional armay like this:

int myArray[10 1:
myArray = new int[31[4]:
or
int myArray[J[1 = new int[3][4]:
This creates a table that can store 12 integer values, four across and three down.
Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their
declaration with a list of initial values enclosed in braces. For example,
int tablef2](3] = {0, 0, 0. 1. 1, 1}:

initializes the elements of the first row to zero and the second row to one. The initialization is done row
by row. The above statement can be equivalently written as

160 .

int table[1[1 = {{0, 0. O}. {1. 1. 1}}:
by surrounding the elements of each row by braces.
We can also initialize a two-dimensional array in the form of a matrix as shown below:
int table[1(1 = {
{0, 0, 0}.
{1. 1, 1}
}:
Mote the syntax of the above statements. Commas are required after each brace that closes off a row,
except in the case of the last row.
We can refer to a value stored in a two-dimensional ammay by using subscripts for both the column
and row of the corresponding element. Example:
int value = table[1][2]:
This retrieves the value stored in the second row and third column of table matrix,
A quick way to initialize a two-dimensional array is to use nested for loops as shown below:
for (1 =0; 1 <5; i++)
{
for {J = 0. J = 5: j*+)

{
if (= j)
table[i1[j]1 = 1;
else
table(11(j] = 0;
I
}
This will set all the diagonal elements to 1 and others to zero as given below :
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Program 9.2 illustrates the use of two-dimensional arrays in real-life situations.
Program 9.2 Application of two-dimensional arrays

class MulTable

{
final static int ROWS = 20:
final static int COLUMNS = 20;
public static woid main{String args[J)

{
int product[1[] = new int[ROWSI[COLUMNS];

int row. column:

System out _printIn("MULTIPLICATION TABLE™);
System._out_printin{™ ~);

{Continued)

Copyrighted material

161

Program 9.2 (Continued)
int 1.§;
for (1=10:; i<ROWS: i++)

for (j=10: j<CCOLUMNS: j++)

product[1]1[j] = i*j:
System.out . print(™ " +product[i](j]):

}
System,out.printin{® "):

}
}
}

Program 9.2 produces the following output:
MULTIPLICATION TABLE

100 110 120 130 140 150 160 170 1BO 190
110 121 132 143 154 165 176 187 198 209
120 132 144 15 168 180 192 204 216 228
130 143 15 169 182 195 208 221 234 247
140 154 168 182 196 210 224 238 252 266
150 165 180 195 210 225 240 255 270 285
160 176 192 208 224 240 256 272 288 304
170 187 204 221 238 255 272 289 306 323
180 198 216 234 252 270 288 306 324 342
190 209 228 247 266 285 304 323 342 36l

Variable Size Arrays

Java treats multidimensional array as “arrays of arrays”™. It is possible to declare a two-dimensional
array as follows:

int x[1[] = newint[3]1[];

x[0] = new int[2];

x[1] = new int[4]:

x[2] = new int[3]:

These statements create a two-dimensional array as having different lengths for each row as shown in

Fig. 9.3.
x [0 [1]
< [0] — :,-r-""-#”
x[1] . 4+ - = ~
x[2 | o i

Copyrighted material

162

;,|l""L =8
'Si 9.5 Strings

String manipulation is the most common part of many Java programs. Strings represent a sequence of
characters. The easiest way to represent a sequence of characters in Java is by using a character array.

Example:
char charArrayl]

new char[4]:

chararray[0)] = "J°;
charArray[1] - "3’
charArray[2] - "y
charArray[3] - 3%

Although character arrays have the advantage of being able to query their length, they themselves
are not good enough to support the range of operations we may like to perform on strings. For example,
copying one character array into another might require a lot of book keeping effort. Fortunately, Java is
equipped to handle these situations more efficiently.

In Java, strings are class objects and implemented using two classes, namely, String and
StringBuffer. A Java string is an instantiated object of the String class. Java strings, as compared to C
strings, are more reliable and predictable. This is basically due to C's lack of bounds-checking. A Java
string is not a character array and is not NULL terminated. Strings may be declared and created as
follows:

String stringhName:
Stringhame = new String (“string”).

Example:
string firstName;
firstName = new String(“Anil™};

These two statements may be combined as follows:
String firstName = new String (CARIlT);

Like armays, it is possible to get the length of string using the length method of the String class.
int m = firstName.length{ J:

Mote the use of parentheses here, Java stnngs can be concatenated using the + operator. Examples:
String fullName =namel + namez2:
String cityl = “New" + “Delhi™:

where namel and name2 are Java strings containing string constants. Another example is:

System.out . printin{firstName + “Eumar™);

String Arrays

We can also create and use arrays that contain strings. The statement
String itemArray[] = new String[l]:

will create an itemArray of size 3 to hold three string constants. We can assign the strings to the
itemArray clement by element using three different statements or more efficiently using a for loon.

 Arays, Songs ar Vectors 163
String Methods

The String class defines a number of methods that allow us to accomplish a variety of string
manipulation tasks. Table 9.1 lists some of the most commonly used string methods, and their tasks.
Program 9.3 shows the use of the method compareTeo() to sort an array of strings in alphabetical order.

e gMethods
Method Call Task performed

57 = g1 tolowerCase; Converts the string s1 to all lowercase

52 = sl.tolpperclase: Converts the string s1 to all Uppercase

52 = sl.replace("x", "y): Replace all appearances of x with v

52 = s1.trim(); Remove white spaces at the beginning and end of the string s
sl.equals(s2) Retumns “truc’if 51 is equal to 52

51.equalsignoreCase(s2) Returns ‘true’if 51 = &2, ignoring the case of characters

sl.length(} Gives the length of s1

51.ChartAt{n) Gives nth character of 51

sl.compareTo(s2) Returns negative if s1 < 52, positive if 51 > 52, and zero if 51 is equal s2
sl.concati(s2) Concatenates s] and s2

s1.substring(n) Gives substring starting from n™ character

51.substring(n. m) Gives substring starting from n™ character up to m™ (not including m™)
String.valueQf{p) Creates a string object of the parameter p (simple type or object)
p.tostring() Creates a string representation of the object p

sl index0f(x") Gives the position of the first occurrence of *x° in the string s1
s1.index0f(*x", n) Gives the position of *x* that occurs after nth position in the string s1

String.ValueDf{Variable) Converts the parameter value to string representation

Program 9.3 Alphabetical ordering of strings

class StringOrdering

static String name[] = {“Madras™. “Delhi”, “Ahmedabad™. “Calcutta”™, "Bombay™}:
public static void main(String args[1)
{

int size = name, length;

S5tring temp = null:

for (int 1 = 0; i < size; i++)

{

for {int j = i+l: j < size: j++)

if (name[j].compareTo(name[i]} < 0}
{

/1 swap the strings

temp = name[1];

name[i1] = name[j]:

name[j] = temp.

{ Continued)

Copyrighted material

164 Progamming with Java: A Primer

Program 9.3 (Continued)

)
)
}
for (int 7 = 0; 1 < size; i++)

{

Y
!
1]
F
4

}

System.out _printininameli]);

Program 9.3 produces the following sorted list:
Ahmedabad
Bomba y
Calcutta
Delhi
Madras

StringBuffer Class

StringBuffer is a peer class of String. While String creates strings of fixed_length, StringBuffer
creates strings of flexible length that can be modified in terms of both length and content. We can insert
characters and substrings in the middle of a string, or append another string to the end. Table 9.2 lists

some of the methods that are frequently used in string manipulations.

Method Task

sl.setChartAt{n. 'x} Modifies the nth character to x

51.append(s?) Appends the string 52 to sl at the end

sl.insert(n, sZ) Inserts the string 52 at the position n of the string s1

s1.setlengthin) Sets the length of the string 51 to n. Ifn<s1_length{) 51 is truncated.

Ifn=51. lengthi) zeros are added to 51

Program 9.4 shows how some of the siring methods are used for manipulating strings.

Program 9.4 Manipulation of strings

class StringMamipulation

{
public static void main(String args[1)

i

StringBuffer str = new StringBuffer(Object language™):
+ str);

System.out _printin{ 0riginal String :
{// obtaining string length
System.out.printin{“Length of string :

+ str.length{));

{ Contined)

Copyrighted material

' Aays, Strings and Veectors” - 165

Program 9.4 (Conrinned)

/i Accessing characters in a string
for (int i = 0; i < str.length{}; i++)
{

intp=1i+1:

System out.printin{“Character at position : " + p + " is ° + str.charAt{i));
}
/¢ Imserting a string in the middle
String astring = new String(str.toString(});
int pos = aString. indexQf (" language™):
str.insertiprocess.” Oriented).
System.out . printin{Modified string : " + str):
/1 Maodifying characters
str.osetCharAt(b, "-"):
System.out .printIn("String now : " + str):
/! Appending a string at the end
str.append{” improves security.”);
System.out .printin{ "Appended string : ~ + str);

)
}
Output of Program 9.4 would be:
Original String : Object language
Length of string : 15

Character at position : 1 45 0
Character at position @ 2 1is
Character at position : 3 is
Character at position : 4 is
Character at position : § is
Character at position . 6 is
Character at position ; 7 1%
Character at position @ B is
Character at position @ 9 15 a

Character at position : 10 is n

Character at position : 11 is g

Character at position ; 12 is u

Character at position : 13 is a

Character at position : 14 is g

Character at position : 15 is e

Modified string : Object Oriented language

String now : Object-Oriented language

Appended string : Object-Oriented language improves security.

o 0 o

(==

Copyrighted material

B * Programming wih Java: A Primer
~
9.6 Vectors

We have seen that J2SE 5.0 version supports the conceptl of variable arguments to methods. This
feature can also be achieved in Java through the use of the Vector class contained in the java.util
package. This class can be used to create a generic dynamic array known as vector that can hold objects
of any fype and any number. The objects do not have to be homogeneous. Arrays can be easily
implemented as vectors. Vectors are created like arrays as follows:

Vector intVect = new Vector{). // declaring without size
Vector 1ist = new Vector(3): /) declaring with size

Note that a vector can be declared without specifying any size explicitly. A vector without size can
accommaodate an unknown number of items. Even, when a size is specified, this can be overlooked and
a different number of items may be put into the vector. Remember, in contrast, an array must always
have its size specified.

Vectors possess a number of advantages over arrays.

1. It is convenient to use vectors to store objects.

2. A vector can be used to store a list of objects that may vary in size.

3. We can add and delete objects from the list as and when required.

A major constraint in using vectors is that we cannot directly store simple data type in a vector; we
can only store objects. Therefore, we need to convert simple types to objects. This can be done using
the wrapper classes discussed in the next section. The vector class supports a number of methods that
can be used o manipulate the vectors created. Important ones are listed in Table 9.3,

To learn more information about vector class, refer to the Chapter 18,

; o i 5 = -l Lry :‘,I;_:,-‘ - o {_'l-.l. St " g Sl
S0 0 Tebie®3 important Vector Methods.
{ K o f) P - e s £

Method Call Task performed

list.addE lement(item) Adds the item specified to the list at the end

Tist. elementAt{10} Gives the name of the 10th object

list, size() (sives the number of objects present

Tist, removel lement (item) Remowves the specified item from the list

list. removel lementAt(n) Removes the item stored in the nth position of the list
Tist, removedl1ETements() Removes all the elements in the Tist
list.copylntolarray) Copics all items from list to armay
1ist.insertElementAt (item. n) Inserts the item at nth position

Program 9.5 illustrates the use of arrays, strings and vectors. This program converts a siring vector
into an array of strings and displays the strings.

Program 9.5 Working with vectors and arrays

import java.util.*; /' Importing Vector class
class LanguageVector
{

public static void main(String args[1)

{

{Continued)

 Amays, Strings and Vectors 167

Program 9.5 (Continued)

Vector 1ist = new Vector():
int length = args.length:
for (int 1 = 0; i <length; i++)

list . addElement(args[i]):
}
list.insertElementAt(~COBOL" .2}
int size = list.size():
String listArray[] = new Strimg[size]:
list.copyIntollistArray):
System. out .printIn{"List of Languages™):
for {(int 1 = 0; 1 < 5ize; 1++)
{
System.out . printIn(listArray[1]);
]
}
}

Command line input and output are:
C:\JAVA\prog=java LanguageVector Ada BASIC C++ FORTRAN Java
List of Languages
Ada
BASIC
COBOL
C+ +
FORTRAN
Java

e‘ 9.7 Wrapper Classes

As pointed out earlier, vectors cannot handle primitive data types like int, float, long, char, and
double. Primitive data types may be converted into object types by using the wrapper classes contained
in the java.lang package. Table 9.4 shows the simple data types and their corresponding wrapper class
types.

| Tabie94 Wrapper Classes for Converting Simple Types
Simple Tipe Wrapper Class
boolean Boolean
char Character
double Double
float Float
int Integer

long Long

The wrapper classes have a number of unique methods for handling primitive data types and objects.
They are listed in the following tables.

Table 9.5 Cenverting Primitive Numbers to Object
Numbers

Using Constructor Methods
Constructor Calling Cosrvesrsion Aot
Integer IntVal = new Integer(il: Primitive integer to [nteger abject
Float Floatval = new Float(f): Primitive float to Float object
Double DoubleVal = new Oouble(d): Primitive double to Double object
Long LongVal = new Longil): Primitive long to Long object

Mote: i, [d and | are primitive data values denoting int, floar, dowuble and long data tvpes. They may
he constants or variables.

Wi Table 8.6 Converting Object Numbers to Primitive
Numbers Using typeValue() method

Method Calling Conversion Action
int 1 = IntVal. intValue{); Ohbject 1o primitive inleger
float f = FloatVal. floatValuel). Ohbject to primitive float
long 1 = LongVal.longValue{ }; Object 1o primitive long
double d = Doubleval.doubleValue(): Ohject to primitive double
Method Caliing Conversion Jr:-'mn
str = Integer. toString(i) Primitive integer to string
str = Float.toString(f); Primitive float to string
str = Double.toStringi(d); Primitive double to string
str = Long.toString(1); Primitive long to string

Table 9.8 Converting String Objects to Numeric Objects

Method Calling Commversion Action

DoubleVal = Double.Valueofistr): Converts string to Double object
FloatVal = Float.ValueDfistr): Converis siring to Float object
Int¥al = [nteger Valueofistr); Convens string to Integer ohject
LongVal = Long.ValueDfi{str): Converts string to Long object

Note: These numeric objects may be converted to primitive numbers using the type Valuef)
method as shown in Table 9.6,

= . e e b
" I | & ! 1 F7
'._.II_-I_ '."! |.\,_:| L |--._-! = bl

Table 9.9 Converting Numeric Strings to Primitive Numbers

Using Parsing Methods '
Method Calling Conversion Action
int 1 = Integer.parselntistr): Converts string to primitive integer
long i = Long.parselLongistr); Converts string to primitive long

Mote: parselnitf } and parseLong() methods throw a NumberFormatException if the value of the str
does not represent an integer.

Program 9.6 illustrates the use of some most commonly used wrapper class methods.
Program 9.6 Use of wrapper class methods

import java.io_*;
class Invest
{
public static void main(String args[1)
{
Float principalAmount = new Float(0): // Converting number to object
Flpat interestRate = new Float(0):
int numYears = 0:
try
{
DatalnputStream in = new DatalnputStream{System.in):
System.out .print{"Enter Principal Amount . 7);
System,out, flush{):
5tring principal5tring = in.readLine();
principalAmount = Float.valuedf(principalString): // Siring object to number object
System.out .print{“Enter Interest Rate : ")
system.out . flush():
String interestString = in.readline():
interestRate = Float.valueQf{interestString);
System.out.print("Enter Number of Years ; ")
System.out. flush():
String yearsstring = in.readline{):
numfears = Integer.parselnt(yearsString); // Numeric strings to numbers

}
catch (I0Exception &)
i

System. out.printIn(*1/0 Error”™):
System_ exit(l);

float value =loan{principalAmount.flaotValue(),
interetRate. floatValue(). rumYears):

(Continued)

Copyrighted material

170 Programming with Jave: A Frimer

Program 9.6 (Continued)

printiine():
System.out.printIn{“Final Value = " + value);
printline():
}
// Method to compute Final Value
static float loan (float p, float r. int n)

{

int year = 1:

float sum = p:

While (year <= n)

{
sum = sum * (1+r):
year = year + 1:

}

return sum;

}
// Method to draw a line
static void printline()

{

for (int 4 = 1: 1 <= 30: j4+)

{

System.out .print{~="1:

!
System.out.printn{® ");

}
}

The output of Program 9.6 would be:

Enter Principal Amount : 5000
Enter Interest Rate ; 0.15
Enter Mumber of Years : 4

Final Value = 8745.03

Autoboxing and Unboxing

The autoboxing and unboxing feature, introduced in J28E 5.0, facilitates the process of handling
primitive data types in collections. We can use this feature to convert primitive data types to wrapper
class types automatically. The compiler generates a code implicitly to convert primitive type to the
comresponding wrapper class type and vice-versa. For example, consider the following statements:
Double d_object = 98.42;
double d_primitive = d_object. doubleValue(J:
Using the autoboxing and unboxing feature, we can rewrite the above code as:
Double d_object = 98.42;
double d_primitive = d object:

1

How, the Java compiler provides restrictions to perform the following conversions:

* Convert from null type to any primitive type.
» Convert to the null type other than the identify conversion.
¢ Convert from any class type C to any armay type if C is not object.

Program 9.7 illustrates how to add two elements from the collections, Stack without using
autoboxing and unboxing:
Program 3.7 Adding two elements from stack

import java.util.Stack:
public class autounboxex

public static void main{String args[])
{
Stack mystack = new Stack():
mystack.pushinew Integeri{l10)):
mystack .pushinew Integer{20}):
Integer stksuml = (Integer) mystack.popi);
Integer stksumZ = (Integer) mystack.pop();
int stksum = stksuml.intValue()+stksum?Z.intvalue();
System.out .printin{stksum);

The above code can be rewritten using autoboxing and unboxing feature, as shown below:

import java.util.Stack.
public class autounboxex
{
public static void main(String args[])
{
Stack<Integer> MyStack = new Stack<Integer=():
mystack . push{10); //autobox
mystack.push(20). //autebox
int stackSum = myStack.pop() + myStack.pop(): //unbexing
System.out .printIn(“The topmost element from the stack 1s:
“+mystack . popl));
System.out .printin(“The next to topmost element from the stack is:
“Hmystack.pop()):
System.out .printin(“The sum of two elements from the Stack™+stackSum):

The output for the above program 15

The topmost element from the stack is: 10
The next topmost element from the stack 1s: 20
The sum of two elements from the stack is: 30

172

@ 9.8 Enumerated Types

J2SE 5.0 allows us to use the enumerated type in Java using the enum keyword. This keyword can be

used similar to the static final constants in the earlier version of Java. For example, consider the
following code:

public class Days

{
public static fimal int DAY _SUNDAY=0;
public static fimal int DAY MONDAY=1:
public static final int DAY TUESDAY=Z:
public static final int DAY WEDNESDAY=3.
public static final int DAY THURSDAY=4:
public static fimal int DAY _FRIDAY=5:
public static fimal int DAY SATURDAY=6:

Using the enumerated type feature provided by J25E 5.0, the above code can be rewritten as:

public erum Day{SUNDAY, MOMDAY, TUESDAY, WEDNESOAY, THURSOAY. FRIDAY,
SATURDAY }

The advantages of using the enumerated type are:

s Compile-time type safety
& We can use the enum keyword in switch statements

Program 9.8 illustrates the use of enum type:
Program 9.8 Use of enum type data

public class Workingdays
{
enum Days
{
Sunday .
Monday.
Tuesday.
Wednesday
Thursday,
Friday.
Saturday

]
public static void main{5tring args(])

{
for (Days d : Days.values())

{

weekend(d) ;

(Continued)

Program 9.8 (Continued)

}
}
private static void weekend(Days d)
{
if{d.equals(Days.sunday)
System out printIn{“value = ° + d +" 15 a Holiday™);
else
System out printin{“value = "+ d+" is a working day™):

}

}

The output of the above program is:

valug = Sunday 15 a Holiday

valuge = Monday 15 a Working Day
value = Tuesday is a Working Day
value = Wednesday 15 a Working Day
value = Thursday 15 a Working Day
value = Friday 15 a Working Oay
value = Saturday s a Working Day

% 9.9 Annotations

The annotations feature, introduced by J25E 5.0, is also known as metadata. We can use this feature to
merge additional Java elements with the programming elements, such as classes, methods, parameters,
local variables, packages, and fields.

Metadata is stored in Java class files by the compiler and these class files are used by the JVM or by
the program to find the metadata for interacting with the programming elements. Java contains the
following standard annotations:

Annotation Purpase
@leprecated Compiler wams when deprecated java elements are used in non-deprecated
Prograr.
@lverrides Compiler generated error when the method uses this annotation type does not

override the methods present in the super-class.

In addition to the above standard annotations, Java also contains some meta-annotations available in
the java.lang.annotation package. The following table provides the meta-annotations:

Meta-annotation Purpose
BDocument ed Indicates annotation of this type to be documented by Javadoc.
@Inherited Indicates that this type is automatically inherited.
BRetention Indicates the extended peniod using annotation type.
BTarget Indicates to which program clement the annotation is applicable.

Copyrighted material

174

The declaration of annotation is similar to that of an interface. We use the symbol “[@" before
keyword interface. For example, consider the following code that contains the declaration of an
annotation:

package njunit.annotation;

Import Java.lang.annotation.*:
BRetention{Retentionpolicy . RUNTIME)
@Target{(ElementType . METHOD))
public @interface UnitTest

String value()
J

where, (aRetention is a meta-annotation, which declares that the (@ UnitTest annotation must be stored
in a class file. The (@Target meta-annotation 15 used to declare the (@UnitTest annotation, which
annotates the methods in the Java class files. The (@interface meta-annotation is used to declare the
{@UnitTest annotation with the member called value, which returns String as an object.

While using annotations, we need to follow some guidelines:

* Do not use extends clause. [t automatically extends the marker interface
Java.lang.annotation. Annotation

* Do not use any parameter for a method

Do not use generic methods

* Do not use throws clause

An annotation can also be applied to programming elements. For example, consider the code in
which an annotation is applied to the methods, positive() and negative() of a class, Checking:
import njunit.annotation.™®;
public class Checking
{
@UnitTest{value="Test 1. This test will positive™)
public void positive{int no)

{

)
@UnitTest("Test 2. This test will negative.”);

public void negative(int no)
{
assert no < 0
!
}

After merging the annotation with the programming element, we can use the methods available in
the mterface, Java.lang.reflect. Annotated Element to query about the existence of programming
element and get their values. The methods of the AnnotatedElement interface are:

IsAnnotationPresent()
getAnnotations()
getAnnotation()
getDeclared Annotations()

assert no > 0:

Arrays, Strings and Vectors

The classes that implement the AnnotatedElement interface are:

® java.lang.reflect.accessibleobject
+ java.lang.class

¢ java.lang.reflect.constructor

* java.lang.reflect.field

+ java.lang reflect. method

* java.lang.package

Program 9.9 illustrates the use of annotations:
Program 9.9 Use of annofations

175

import java.lang.annotation.*:
import java.lang.reflect.*;
BRetention(RetentionPolicy . RUNTIME)
ginterface MySingle

{

int value(): // this variable name must be value
}
public class Simgle

/1 Annotate a method using a marker.
@MySingle(100)
public static void myMeth()

{
Single ob = new Singlel):

Lry

Method m = ob.getClass().getMethod(“myMeth™):
MySingle anno = m. getAnnotation(MySingle.class):
System.out.printin{"The value 15 : “anno.value{]):
{/ displays 100
}

catch (NoSuchMethodException exc)
{

System_out.printin{"Method Not Found.”}:
)

)
public static void main{String args[])

myMeth{) :

}
)

The output of the above program is
The value is: 100

Copyrighted material

176 Programming with Java: A Primer

% 9.10 Summary

In this chapter, we have discussed three important Java data structures namely arrays, stnings and
vectors. We leamed the following:

What i an array in Java

How are armays used

How does Java handle strings

How to use the String and StringBuffer classes

What is a vector in Java

How 1o use vectors to store a list of objects that may vary in size
How are wrapper classes useful

We have also discussed the features enumerated types and annotations introduced by J2SE 5.0
VErsion.

i Key Terms
Array, Index, Subscript, Elements, String, StringBuffer, Substring, Concatenation, Vector, Wrapper class,
Enumerated type, Annotations

Review QuEsTIONS l

9.1 What is an array?
9.2 Why are arrays easier 1o use compared to a bunch of related vanables?
9.3 Wrte a statement to declare and instantiate an array to hold marks obtained by students in different
subjects in a class. Assume that there are up to 60 students in a class and there 8 subjects.
9.4 Find errors, if any, in the following code segment:
int m;
int x[] = int[10]:
int[.] y = int[11]:
forim=1: me=10: +m)
x[m] = y[(m] = m;
x =y = new int[20]:
for (m=0: m<l0: ++m)
System.out .printin{x[m]}
9.5 Write a program for fitting a straight line through a set of points(x;, y;b i = 1, ..., n. The straight line
equation is

y=mx +¢C
and the values of m and ¢ are given by

n2 Xy - L2 X ¥i

o(Zxl)-(Ev)

Copyrighted material

¢= (T -mEx)

All summations are from 1 to n.
9.6 The daily maximum temperatures recorded in 10 cities during the month of January (for all 31 days) have

been tabulated as follows:
.1
2
3
M

Write a program to read the table elements into a two-dimensional array temperature, and to find the city
and day corresponding to (a) the highest temperature and (b) the lowest temperature.

9.7 An election is contested by 5 candidates. The candidates are numbered 1 to § and the voting is done by
marking the candidate number on the ballot paper. Write a program to read the ballots and count the votes
cast for each candidate using an array variable count. In case, a number read is outside the range | to 5, the

ballot should be considered as a “spoilt ballot’ and the program should also count the number of spoilt
ballots.

9.8 The annual examination results of 100 students are tabulated as follows:

Roll No. Subject | Subject 2 Subject 3

Write a program to read the data and determine the following:
{a) Total marks obtained by each student.

{b) The highest marks in each subject and the Roll No. of the student who secured it.
i{c) The student who obtained the highest total marks.

9.9 Given are two one-dimensional arrays A and B which are sorted in ascending order. Write a program to
merge them into a single sorted array C that contains every item from arrays A and B, in ascending order.

9,10 Two matrices that have the same number of rows and colwmns can be multiplied to produce a third matrix,
Consider the following two matrices.

CITHE PRI T by bz . by
A= 3y Ap .- A B = h‘:'u byy o by
Bag e e B | IR . N

The product of A and B is a third matrix C to size n by n where each element of C is given by the following
equation.

178

n
Cy= 2 2y by
k-1
Write a program that will read the values of elements of A and B and produce the product matrix C.
9.11 How does String class differ from the StringBufTer class?
9.12 Write a method called

delete(5tring str. int m)

that returmns the nput string with the mth element remowved.
9.13 Wnite a program to do the following:

{a) To output the question “Who is the imventor of C+ +77
(b} To accept an Answer.
(c) To print out “Good™ and then stop, if the answer is cormect.
id) To output the message “try again”, if the answer is wrong.
(e} To display the cormect answer when the answer 18 wrong even al the third attempt and stop.

9.14 Write a program to extract a portion of a character string and print the extracted string. Assume that m
characters are extracied, starting with the nth character.

9.15 Write a program, which will read a text and count all occurrences of a particular word.

9.16 Write a program, which will read a string and rewrite it in the alphabetical order. For example, the word
STRING should be written as GINRST.

9.17 What is a vector? How is it different from an armay?

9.18 What are the applications of wrapper classes?

9.19 Write a program that accepis a shopping list of five items from the command line and stores them in a
VeCiorn

9.20 Modify the program of Question 9.19 to accomplish the following:

To delete an item in the list.

To add an item at a specified location in the list.
To add an item at the end of the list.

To print the contents of the vector.

DeBuGGING EXERCISES =|

9.1 Following code for creating an int array has a missing statement. Add the statement to successfully create the
ArTAY.
class IntArray
' public static void(5tring[] args)
{
/! declare an array of integers
int[] anArray:
[/ assign a value to each array element and print
for {int i = 0: 1 < anArray.length: i++)
© anArray[1] = 1:
System.out print(anArray[i] + = 7).
}

Copyrighted material

System.out .printin{};

}
}
9.2 Debug the given code for displaying the contents of an array containing language names.
class ArrayData

{

public static void main{5tring[] args)

{
{/ declare an array containing language names
String[] stringArray={"Java~. “Visual Basic™, “VC++". "C7}:
{/ print value of each array element
for (int 1 = 0; 1 < stringArray.length(); i++)

System_out print(stringfrray[i] + =, 7):
1

}
9.3 Comect the code to eliminate the compile time ermor thrown.

class Palindrome |
public static void main{String[] args) {
String palindrome = new String("Rod saw | was Dor™):
int len = palindrome.length{):
String dest = new String():
for (int 1 = (len - 1): 1 >= 0: i=) {
dest . append{palindrome.charAt(i)):
}
System.out format{ isin”. dest.toString()):
}
}

94 The code checks for duplicate values in a vector and removes them. Identify errors, if any.
import java.util. *:
class DupValue

{
public static void main{String[] args)

{

Vector v =new Vector():
.add({"Delhi”);
.add("Mumbai”);
.add("Calcutta”™):
add(“Chennai™);
.add(“Delhi"):

Vector tmpVector=new Yector():
String tmpvalue;

for {(int j = 0;] == v.size(): j++)

{

= 2 o

-

tmp¥alue = (String)v.elementAt(j);

Copyrighted material

160 * Programming i Jova: A Prmr
if (tmpValue!=null)
{
if { tmpVector.isEmpty())
tmpVector, addE lement (tmpValue) :
1f (tmpVector.indexOf(tmpValue)==-1})
{

}
}
}:
for (int j = 0; j < tmpVector.size(); j++)
System.out . print(tmpVcr.elementAt(j)};

tmpVector . addE 1ement (tmpValue)

}
}

9.5 The code given below converts a given string to Hexadecimal value. ldentify error(s), if any.
import java.io.*:
import java.util.*:
class ConvertInt

public static void main{String[] args)

{

String s =
int 1 = Imteger.parselnt(s,27);
System_out.print{"Hex Value of: "+ 5 +" = " + i);

Copyrighted material

Interfaces: Multiple
Inheritance

~
4
@ 10.1 Introduction

In Chapter 8, we discussed about classes and how they can be inherited by other classes. We also
learned about various forms of inheritance and pointed out that Java does not support multiple
inheritance. That is, classes in Java cannot have more than one superclass. For instance, a definition
like

class A extends B extends C

{

is not permitted in Java. However, the designers of Java could not overlook the importance of multiple
inheritance. A large number of real-life applications require the use of multiple inhertance whereby
we inherit methods and properties from several, distinct classes. Since C++ like implementation of
multiple inheritance proves difficult and adds complexity to the language, Java provides an alternate
approach known as interfaces to support the concept of multiple inheritance. Although a Java class
cannot be a subclass of more than one superclass, it can implement more than one interface, thereby
enabling us to create classes that build upon other classes without the problems created by multiple
inheritance.,

182 Programming with Java; A Primer

g 10.2 Defining Interfaces

An interface is basically a kind of class. Like classes, interfaces contain methods and variables but with
a major difference. The difference is that interfaces define only abstract methods and final fields. This
means that interfaces do not specify any code to implement these methods and data fields contain only
constants. Therefore, i1t 15 the responsibility of the class that implements an interface to define the code
for implementation of these methods.

The syntax for defining an interface 15 very similar to that for defining a class. The general form of
an interface definition is:

interface [nterfaceName
{
variables declaration:
methods declaration:
)

Here, interface is the key word and fnterface Name 15 any valid Java vanable (just like class names).
Variables are declared as follows:

l static fimal type VariableName = Value: 1!
1

|

Note that all vaniables are declared as constants. Methods declaration will contain only a list of
methods without any body statements. Example:

return-type methodWamel (parameter 1ist):

Here is an example of an interface definition that contains two variables and one method:

interface [tem
I

i
static final int code = 1001:

static final String name = “Fan~;
void display () ;
}

Note that the code for the method is not included in the interface and the method declaration simply
ends with a semicolon. The class that implements this interface must define the code for the method.
Another example of an interface is:

interface Ares

{

final static float pi = 3_142F;
float compute (float x, float y):
void show {);

b e ———— e ———

Copyrighted material

Interfaces: Multiple Inheritance 183

@ 10.3 Extending Interfaces

Like classes, interfaces can also be extended. That is, an interface can be subinterfaced from other
interfaces. The new subinterface will inherit all the members of the supennterface in the manner similar
to subclasses. This is achieved using the keyword extends as shown below:

interface name? extends namel

body of name?
}

For example, we can put all the constants in one interface and the methods in the other. This will
enable us to use the constants in classes where the methods are not required. Example:

interface ItemConstants

{
int code = 1001;
string name = “Fan”;

interface Item extends [temConstants

void display ():
}

The interface Item would inherit both the constants code and name into it. Note that the variables
name and code arc declared like simple variables. It is allowed because all the variables in an interface
are treated as constants although the keywords final and static are not present.

We can also combine several interfaces together into a single interface. Following declarations are
valid:

interface ItemConstants

{
int code = 1001;
String name = “Fan”":

interface [temMathods
{

}
interface Item extends [temConstants. [temMethods

void display(),

While interfaces are allowed to extend to other interfaces, subinterfaces cannot define the methods
declared in the superinterfaces. After all, subinterfaces are still interfaces, not classes. Instead, it is the

184 Programming with Java: A Primer

responsibility of any class that implements the derived interface to define all the methods. Note that
when an interface extends two or more interfaces, they are separated by commas.

It is important two remember that an interface cannot extend classes. This would violate the rule that
an interface can have only abstract methods and constants,

-
-y

10.4 Implementing Interfaces

Interfaces are used as “superclasses” whose properties are inherited by classes. It is therefore necessary
to create a class that inherits the given interface. This is done as follows:

class classname implements inCerfacensme

{
}

Here the class classname “implements” the interface inferfacename. A more general form of
implementation may look like this:

class classname extends superclass
implements interfacel. interfaceZ2.

body of classname

{

}

This shows that a class can extend another class while implementing interfaces.

When a class implements more than one interface, they are separated by a comma. The
implementation of interfaces can take various forms as illustrated in Fig. 10.1.

Implementation of interfaces as class types is illustrated by Program 10.1. In this program. first we
create an interface Area and implement the same in two different classes, Rectangle and Circle. We
create an instance of each class using the new operator. Then we declare an object of type Area, the
interface class. Now, we assign the reference to the Rectangle object rect to area. When we call the
compute method of area, the compute method of Rectangle class is invoked. We repeat the same
thing with the Circle object.

Program 10.1 Implementing interfaces

body of classname

/' InterfaceTest.java
interface Area// Interface defined

{
final static float pi = 3.14F:
float compute (float x. float v):
}
class Kectangle implements Area /{ Interface implemented

public float compute (float =, float ¥}
{

{Continued)

185

Program 10.1 (Continued)
return (x*y);

}

3‘1355 Circle implements Area !/ Another implementation
public float compute (float x, float y)
i return (pi*a*x):

class InterfaceTest

public static wvoid main(String args[1)

{
Rectangle rect = new Rectangle():
Circle cir = new Circle():
Area area; /1 Interface object
area = rect; {1 area refers to rect object
System.out.printIn{ Area of Rectangle = "

+ area.compute(10, 20));
area = cir; {{ area refers to cir object
System.out.printin(Area of Circle = ~

+ grea.compute(l0. 01);:

}

The Output 15 as follows:

Area of Rectangle = 200
Area of Circle = 314
Any number of dissimilar classes can implement an interface. However, to implement the methods,
we need to refer to the class objects as types of the interface rather than types of their respective
classes. Note that if a class that implements an interface does not implement all the methods of the
interface, then the class becomes an absrracr class and cannot be instantiated.

(&) {bj

(©) (@)
"Wigid0ity' Various forms of interface implementation

& 10.5 Accessing Interface Variables

Interfaces can be used to declare a set of constants that can be used in different classes. This is similar
to creating header files in C++ to contain a large number of constants. Since such interfaces do not
contain methods, there is no need to worry about implementing any methods. The constant values will
be available to any class that implements the interface. The values can be used in any method, as part of
any variable declaration, or anywhere where we can use a final value. Example:

interface A
{

int m = 10:
int n = 50;

)

class B implements A

{

int x=m:

if (size < n)

)

187

Program 10.2 illustrates the implementation of the concept of multiple inheritance using interfaces.

Program 10.2 Implementing multiple inheritance

class Student

{
int rolINumber:

void getNumber(int n)

raolTNumber = n:
}

void putNumber()

{

}

}
class Test extends Student
{

System.out.printin(”™ Roll Mo : © + rollNumber):

float partl, partZ;
void getMarks(float ml. float m2)

[
partl = ml;
partd = mZ;
}
vold putMarks()
{
system.out printin{“Marks obtained °);
System.out . printin{“part 1 = ° + partl);
System.out printin{“Part2 = ~ + partd);
}

|
interface Sports

{
float sportWt = 6.0F;

void putwt(J;

|
rlass Results extends Test implements Sports

[Continued)

Copyrighted material

188
Program 10.2 (Continued)

{
float total:
public void putWt{)
{
System.out.printin{"Sports Wt = ° + sportit):
void display()
{
total = partl + part2 + sportkt;
putNumber(J:
putMarks{ J:
putWti(J;
System.out.printin(~Total score = = + total);
!
!
class Hybrid
{
public static void main(5tring args[1)
{
Results studentl = new Results{):
student].getNumber(1234):
student] getMarks(27.6F. 33.0F):
studentl.display():
}
}
Output of the Program 10.2:
Roll No ; 1234
Marks obtained
Partl = 27.5
Part2 = 33
sports Wt = 6

Total score = 66.5

10.6 Summary

Java does not support multiple inheritance. Since multiple inheritance is an important concept in OOP
paradigm, Java provides an altemate way of implementing this concept. We have discussed in this

chapter

How to design an interface

How to extend one interface by the other
How to inherit an interface and

How to implement the concept of multiple inheritance using interfaces

Copyrighted material

Interfaces: Multiple Inberitance 189

ol

The concepts discussed in this chapter will enable us to build classes using other classes available
already.

R Key Terms

Interface. Implementation, Multiple inheritance.

ReVIEW QUESTIONS

i1 Whhat 15 an interiace?

10.2 How do we tell Java that the class we are creating implements a particular interface?

10,3 What is the major difference between an interface and a class?

10.4 What are the similarities between interfaces and classes?

10.5 Describe the various forms of implementing interfaces, Give examples of Java code for each case.

10.6 Given an example where interface can be used to support multiple inheritance. Develop a standalone Java
program for the example.

Desvccing EXERCISES

10.1 Following code creates an interface. Will this code compile successfully?
public interface FamouslLine

{
void Showlinel)
{
System_out.printin{"Show Line™);
}:
1

10.2 Debug the given code for implementing interfaces.
interface Famousline

{

void Showline():

}

class Novell implements FamousLine

{
public wvoid ShowLine()

{

}
}
class Novel2 implements FamouslLine
{

public woid Authordame()

{

System.out . printIn{"To be. or not to be™):

System.out, printin{”Shakespeare™);

Copyrighted material

190 * Programing wit dava: A rner
}

public class Uselnterface

public static void main{String args[1)

{
Rovell hamlet = new Novell():

Novel? juliet = new Novel2();
hamlet . ShowLine();
juliet . AuthorName():
}
}
10.3 Correct the code to rectify the compile time ermor thrown.
interface NewShape

vold draw():
!
interface Circle extends NewShape

{

void getRadius():
int radius=10;

)

class NewCircle implements Circle

{
public void getRadius()

{
System.out . printin{radius);
]
}
class ExtendInterface extends NewCircle
{ .
public static void main(String[] args)
{
Circle nc = new NewCircle().
ne.getRadius():
}
} .

10.4 In this code, the interface acts as a type. Will this code compile successfully?, If not, commect the code.
interface NewShape

void draw():

}
class NewCirclel implements NewShape

{

Copyrighted material

m

public void draw()

{ System.out .printin({ New Circle 1 Drawn™};
} }
class NewCircle2
{ public void draw()

i System.out . printin(“New Circle 2 Drawn™);

class Castlnterface

public static void mainiString[] args)

{
NewShape ncl= new NewCirclel():
NewShape nc2= new NewCircleZ():
ncl.draw();
ncd. drawl);

}

}
10.5 Check if the code will compile successfully. If not, correct the code.

interface NewShape

{
void draw():
int radius = 10:
}
class NewCirclel implements NewShape
{
public void draw()
{
radius=12;
System.out.printin{*Radius is: ° + radius):
}

class InterfaceVar

public static void main(String[] args)

{
NewShape ncl = new NewCirclel():

ncl. drawl() :

191

Copyrighted material

Packages: Putting
Classes Together

o~
|)
g 11.1 Introduction

We have repeatedly stated that one of the main features of QOP is its ability to reuse the code already
created. One way of achieving this is by extending the classes and implementing the interfaces we had
created as discussed in Chapters 8 and 10. This is limited to reusing the classes within a program. What
if we need to use classes from other programs without physically copying them into the program under
development? This can be accomplished i Java by using what is known as packages, a concept
similar to “class libraries™ in other languages. Another way of achieving the reusability in Java,
therefore, is 10 use packages.

Packages are Java's way of grouping a variety of ¢classes and/or interfaces together. The grouping 13
usually done according to functionality. In fact, packages act as “containers” for classes. By organizing
our classes into packages we achieve the following benefits:

1. The classes contained in the packages of other programs can be easily reused.

2. In packages, classes can be unique compared with classes in other packages. That is, two classes
in two different packages can have the same name. They may be referred by their fully qualified
name, comprising the package name and the class name.

3. Packages provide a way to “lnde” classes thus preventing other programs or packages from
accessing classes that are meant for internal use only.

4. Packages also provide a way for separating “design™ from “coding”. First we can design classes
and decide their relationships, and then we can implement the Java code needed for the methods.
It is possible to change the implementation of any method without affecting the rest of the design.

For most applications, we will need to use to different sets of classes, one for the mternal
representation of our program’s data, and the other for external presentation purposes. We may have to
build our own classes for handling our data and use existing class libraries for designing user interfaces.
Java packages are therefore classified into two types. The first category is known as Java API packages
and the second 1s known as user defined packages.

We shall consider both the categonies of packages in this chapter and illustrate how to use them in
OUT Programs.

-
'-‘{g 11.2 Java API Packages

Java API provides a large number of classes grouped into different packages according to functionality.
Most of the ime we use the packages available with the Java APL. Figure 11.1 shows the functional
breakdown of packages that are frequently used in the programs. Table 11.1 shows the classes that
belong to each package (see Appendix E).

Cwa D> Cw D G @D Cownd
- Fig- 111 Frequently used API packages

Table 11.1 Java System Packages and Their Classes

Package name Contents

java.lang Language support classes. These are classes that Java compiler itself uses and therefore

they are automatically imported. They include classes for primitive types, strings, math
functions, threads and exceptions.

java.util Language utility classes such as vectors, hash tables, random numbers, date, etc.

java.io Input/output support classes. They provide facilities for the input and output of data,

Java.awl Set of classes for implementing graphical user interface. They include classes for
windows, buttons, lists, menus and so on.

java.net Classes for networking. They include classes for communicating with local computers

a5 well as with internet servers.

java.applet Classes for creating and implementing applets.

194 Programming with Java: A Primer

% 11.3 Using System Packages

The packages are organised in a hierarchical structure as illustrated in Fig. 11.2. This shows that the

package named java contains the package awt, which in tum contains various classes required for
implementing graphical user interface.

Java
#wl Package containing
""" awtpackage
Color
Graphics
- Package containing
Font classes
L]
| . Classes coniaining
Image g methods

/FigsM.2,; Hierarchical representation of java.awt package

There are two ways of accessing the ¢classes stored in a package. The first approach is to use the filly
qualified class name of the class that we want to use. This is done by using the package name
containing the class and then appending the class name to it using the dot operator. For example, if we
want to refer to the class Color in the awt package, then we may do so as follows:

java.awt.Colour
Notice that awt is a package within the package java and the hierarchy is represented by separating
the levels with dots. This approach is perhaps the best and easiest one if we need to access the class
only once or when we need not have to access any other classes of the package.
But, in many situations, we might want to use a class in a number of places in the program or we
may like to use many of the classes contained in a package. We may achieve this easily as follows:

import packagename.classname;
or

import packagename. *.

These are known as import statements and must appear at the top of the file, before any class
declarations, import is a keyword.

Copyrighted material

193

The first statement allows the specified class in the specified package to be imported. For example,
the statement

import java.awt.Color;

imports the class Colour and therefore the class name can now be directly used in the program. There
is no need to use the package name to qualify the class.

The second statement imports every class contained in the specified package. For example, the
slatement

import java.awt_*:
will bring all classes of java.awt package.

3
«g 11.4 Naming Conventions

Packages can be named using the standard Java naming rules. By convention, however, packages
begin with lowercase letters. This makes it easy for users to distinguish package names from class
names when looking at an explicit reference to a class. We know that all class names, again by
convention, begin with an uppercase letter. For example, look at the following statement:

double y = java.lang.Math.sqrt{x):

Lo

|

: I |
package class method
name name name

This statement uses a fully qualified class name Math to invoke the method sgri). Note that
methods begin with lowercase letters. Consider another example:
java.awt.Point pts[1:

This statement declares an array of Point type objects using the fully qualified class name.

Every package name must be umque to make the best use of packages. Duplicate names will cause
run-time errors. Since multiple users work on Internet, duplicate package names are unavoidable. Java
designers have recognised this problem and therefore suggested a package naming convention that
ensures unigueness. This suggests the use of domain names as prefix to the preferred package names.
For example:

cbe.psg mypackage

Here cbe denotes city name and psg denotes orgamisation name. Remember that we can create a
hicrarchy of packages within packages by separating levels with dots,

{:i 11.5 Creating Packages

We have seen in detan] how Java system packages are organised and used. Now, let us see how to create
our own packages. We must first declare the name of the package using the package keyword followed

Copyrighted material

196 Programming with Java: A Primer

by a package name. This must be the first statement in a Java source file (except for comments and
white spaces). Then we define a class, just as we normally define a class. Here is an example:

package firstPackage: f/ package declaration
public class FirstClass £ elass definition

{body of class)

Here the package name is firstPackage. The class FirstClass is now considered a part of this
package. This listing would be saved as a file called FirstClass.java, and located in a directory named
firstPackage. When the source file 15 compiled, Java will create a .class file and store it in the same
directory.

Remember that the .class files must be located in a directory that has the same name as the package,
and this directory should be a subdirectory of the directory where classes that will import the package
are located.

To recap, creating our own package involves the following steps:

I. Declare the package at the beginning of a file using the form

package pdackagename:

. Define the class that is to be put in the package and declare it public,

. Create a subdirectory under the directory where the main source files are stored.
. Store the listing as the classname. java file in the subdirectory created.

. Compile the file. This creates .class file in the subdirectory.

L e e Bad

Remember that case is significant and therefore the subdirectory name must match the package
name exactly,
As pointed out earlier, Java also supports the concept of package hierarchy. This is done by
specifying multiple names in a package statement, separated by dots. Example:
package firstPackage.secondPackage:

This approach allows us to group related classes into a package and then group related packages
into a larger package. Remember to store this package in a subdirectory named firstPackage/
secondPackage.

A java package file can have more than one class definitions. In such cases, only one of the classes
may be declared public and that class name with .java extension is the source file name. When a

source file with more than one class definition is compiled, Java creates independent .class files for
those classes.

fl-.
@ 11.6 Accessing a Package

It may be recalled that we have discussed earlier that a Java system package can be accessed either
using a fully qualified class name or using a shortcut approach through the import statement. We use

Copyrighted material

the import statement when there are many references to a particular package or the package name is
too long and unwieldy.
The same approaches can be used to access the user-defined packages as well. The import

statement can be used to search a list of packages for a particular class. The general form of import
statement for searching a class is as follows:

import packagel [.package?] [.packag3].classname:

Here packagel is the name of the top level package, package? is the name of the package that is
inside the packagel, and so on. We can have any number of packages in a package hierarchy. Finally,
the explicit classname is specified.

Mote that the statement must end with a semicolon (;). The import statement should appear before
any class definitions in a source file. Multiple import statements are allowed. The following is an
example of importing a particular class:

import firstPackage.secondPackage.MyClass;

After defining this statement, all the members of the class MyClass can be directly accessed using
the class name or 11s objects (as the case may be) directly without using the package name.
We can also use another approach as follows:
import packagename.*;

Here, packagename may denote a single package or a hierarchy of packages as mentioned earlier.
The star (*) indicates that the compiler should search this entire package hierarchy when it encounters
a class name. This implies that we can access all classes contained in the above package directly.

The major drawback of the shortcut approach is that it is difficult to determine from which package
a particular member came. This is particularly true when a large number of packages are imported. But
the advantage is that we need not have to use long package names repeatedly in the program.

@ 11.7 Using a Package

Let us now consider some simple programs that will use classes from other packages. The listing below
shows a package named packagel containing a single class ClassA.

package packagel:
public class ClassA

public void displayA()
{

}

System.out.printin{("Class A7)

}

This source file should be named ClassA.java and stored in the subdirectory packagel as stated
earlier, Now compile this java file. The resultant ClassA.class will be stored in the same subdirectory.

. S T

Now consider the listing shown below:

import packagel. ClassA;
class Packagelestl

{
public static void main(5tring args[])
{
ClassA objectA = new ClassA()
objectA . displayaAd J:
I
}

This listing shows a simple program that imports the class ClassA from the package packagel. The
source file should be saved as PackageTest].java and then compiled. The source file and the compiled
file would be saved in the directory of which packagel was a subdirectory. Now we can run the
program and obtain the results.

During the compilation of PackageTest1.java the compiler checks for the file ClassA.class in the
packagel directory for information it needs, but it does not actually include the code from
ClassA.class in the file PackageTestl.class. When the PackageTestl program is run, Java looks for
the file PackageTestl.class and loads it using something called class loader. Now the interpreter
knows that it also needs the code in the file ClassA.class and loads it as well.

Now let us consider another package named package? containing again a single class as shown
below:

package packaged:
public class ClassB

{
protected int m = 10
public void displayB{)
{
System_out . printin{ Class B~):
System.out.printini{™m = ° + m):
|
}
As usual, the source file and the compiled file of this package are located in the subdirectory

packagel.

Program 11.1 shown below uses classes contamed in both the packages and therefore 1t imports
packagel and packagel Note that we have used star instead of explicit class name in importing
packagel.

Program 11.1 Importing classes from other packages

import packagel._ClassA;
import packaged.®;
class PackageTest?

{

public static void main{5tring args[1)

{Contirued)

Copyrighted material

Packages: Pulfing Classes Together 199
Program 11.1 (Continued)

{
ClassA objectA = new ClassAl):
ClassB objectB = new ClassB(J:
objectA.displayAl).
objectB.displayB(:

]

This program may be saved as PackageTest2.java, compiled and run to obtain the results. The
output will be as under

Class A
Class B
m = 10

When we import multiple packages it is likely that two or more packages contain classes with
identical names. Example:

package packl:
public class Teacher

(o}
public class Student
Lo }

package pack?;
public class Courses

[.......... 1
public class Student
P }

We may import and use these packages like:
import packl. ™ :
import packl.*;
Student studetnl; /{1 create a student object

Since both the packages contain the class Student, compiler cannot understand which one 1o use

and therefore generates an error. In such instance, we have to be more explicit about which one we
intend to use.

Example:

import packl.*:
import pack?.*:

packl.Student studentl: HOK
pack? . Student student?: 0K
Teacher teacherl: // No problem

Courses coursel: /i Mo problem

It is also possible to subclass a class that has been imported from another package. This is illustrated
by Program 11.2. The output will be:
Class B
m = 10
Class C
m = 10
n = 20
Mote that the variable m has been declared as protected. A subclass in another package can inherit

a protected member. It would not have been possible if it has been declared as either private or
“default”™.

Program 11.2 Subclassing an imported class

/1 PackageTest3 java

import package?.ClassB;
class ClassC extends ClassB

int n = 20;

void displayC{)

{
System.out . printin{"Class C7):
System.out.printin{™m = ° + m);
System.out . printin{™n = ° + nl:

)

class PackageTest3l
public static void main(String args[1]}

ClassC objectC = new ClassCi);
objectC.displayB{);
objectC.displayC():

}

}

While using packages and inheritance in a program, we should be aware of the visibility restrictions
imposed by various access protection modifiers. As pointed out earlier, packages act as containers for
classes and other packages, and classes act as containers for data and methods. Data members and
methods can be declared with the access protection modifiers such as private, protected, and public
as well as “default”. The effect of use of these modifiers was discussed in detail in Chapter 8. For the
sake of casy reference, the access protection details given in Table 8.1 are reproduced Table 11.2.

Table 11.2 Access Protection

S e | | |
~._ modifier . |
N, public I protected friendly private | private.
‘*-.H | | fﬂqﬁ]‘ﬂfﬂ F"mw‘f
Access [.
location ¥ 3: | |
Same class Yes Yes Yes ' Yes .!:M

p— - S - . - - 1
Subclass in Yes Yes | Yes . Yes No |
sane package | ! -

B | | | I
Dther classes | Yes | Yes "’.'f_-“_',-f-' No Mo 1
in same package | | | i |

o N -
Subclass in | Ves l Yes | Ne | @ Mo |
other packages I l T ' .

| — B :
Non-subclasses I Yes No No No | No |
in other packages = | :

g 11.8 Adding a Class to a Package

It is simple to add a class to an existing package. Consider the following package:

package pl;
public ClassA

{

)

The package pl contains one public class by name A. Suppose we want 1o add another class B to
this package. This can be done as follows:

1. Detfine the class and make it public.
2. Place the package statement
package pl;
before the class defimtion as follows:
package pl:
public class B

/1 body of A

/1 body of B
}

3. Store this as B.java file under the directory pl.
4. Compile B.java file. This will create a B.class file and place it in the directory pl.

Copyrighted material

202

Note that we can also add a non-public class 1o a package using the same procedure,
MNow, the package pl1 will contain both the classes A and B. A statement like

import pl.¥*;:
will import both of them.

Remember that, since a Java source file can have only one class declared as publie, we cannot put
two or more public classes together in a Jjava file. This is because of the restriction that the file name
should be same as the name of the public class with java extension.

If we want to create a package with multiple public classes in it, we may follow the following steps:

1. Decide the name of the package.

2. Create a subdirectory with this name under the directory where main source files are stored.

3. Create classes that are to be placed in the package in separate source files and declare the

package statement
package packagename;

at the top of each source file.

4. Switch to the subdirectory created earlier and compile each source file. When completed, the
package would contain .class files of all the source files.

I.nl""L'_
F 1.9 Hiding Classes

When we import a package using asterisk (*), all public classes are imported. However, we may prefer
to “not import”™ certain classes. That is, we may like to hide these classes from accessing from outside
of the package. Such classes should be declared “not public”. Example:

package pl;

public class X !/ public class, available outside
{ /! body of X

ilass. ¥ /{ not public, hidden

{ /{ body of Y

Here, the class Y which is not declared public is hidden from outside of the package pl. This class
can be seen and used only by other classes in the same package. Note that a Java source file should
contain only one public class and may include any number of non-public classes. We may also add a
single non-public class using the procedure suggested in the previous section,

MNow, consider the following code, which imports the package pl that contains classes X and Y

import pl.¥*;
X objectX: fi OK: class X is available here
¥ objecty; A Wot OK: Y 1s not available

Java compiler would generate an error message for this code because the class Y, which has not
been declared publie, is not imported and therefore not available for creating its objects.

203

| 11.10 Static Import

Static import is another language feature introduced with the J2SE 5.0 release. This feature eliminates
the need of qualifying a static member with the class name. The static import declaration is similar to
that of import, We can use the import statement to import classes from packages and use them without
qualifving the package. Similarly, we can use the static import statement to import static members from
classes and use them without qualifying the class name. The syntax for using the static import feature is:

import static package-name.subpackage-name.class-
name.staticmember-name:

{or)

import static package-name.subpackage-name.class-name, *:

Before introducing the static import feature, we had to use the static member with the qualifying
class name. For example, consider the following code that contains the static member PI:
double area of circle = Math. Pl * radius * radius:

In the above code, PI is the static member of the class, Math. So the static member P1 is used in the
above program with the qualified class name called Math.

Also, before implementing the static import feature, if we use static member in an interface and we
need to use it in a class, then we have to implement that interface in the class. Now, we can use this
feature to import the interface into the class. Consider the following code that provides an example of
importing the interface, salary _increment into the class, salary _hike:

public interface Salary increment

{

public static final double Manager=0._5:
public static final double Clerk=0.25:

}

Here, let us assume that the interface is available in the subpackage, employee details of the

employee package. Il we need to access the interface, we can import the interface using the static
import staternent as follows:

import static employee employee details. Salary increment:
class Salary hike

{
public static void main(5tring args[])
double manager salary=Manager*Manager current salary;
double clerk_salary=Clerk*Clerk _current_salary:
}
!

Thus, we can use the static member in the code without qualifying the class name or interface name.
Also, the static import feature eliminates the redundancy of using the qualified class name with the

204

static member name and increases the readability of the program. Program 11.3 illustrates the use of
static import:
Program 11.3 Use of Static import

import static java.lang.Math.*;
public class mathop

{
public wvoid circle{double r)
{
double area=PIl*r* r;
System.out.printin{“The Area of Circle 15 :"+area):
}
public static wvoid main{String args[])
{
mathop obj=new mathopl):
obj.circle(d.3):
}
}

The output for the above programs is:
The Area of Circle is 16.619025137490002

< 11.11 Summary

In this chapter we saw the building blocks of coding in Java and high-level requirements for designing
applets and application programs. Java has several levels of hierarchy for code organisation, the highest
of which is the package. We have seen here

How to create a package,

How to add more classes to a package,

How to access the contents of a package,

How to protect a class from accidental access, and
= How to usc Java system packages.

This chapter essentially has shown us how to organise classes into packages to better keep track of
them.

ﬁ Key Terms
Package, Import, public, protected, Friendly, static import

ReviEw QUESTIONS

11.1 What is a package?
11.2 How do we tell Java that we want to use a particular package in a file?

11.3 How do we design a package?
11.4 How do we add a class or an inferface to a package”

Copyrighted maierial

11.5 Consider the example Program 10.2. Design a package to contain the class student and another package
to contain the interface sports. Rewrite the Program 10.2 using these packages.

11.6 Discuss the various levels of access protection available for packages and their implications.

11.7 ‘What is static import? How is it useful?

DeBuGGING EXERCISES

11.1 The following code finds out a duplicate value in a vector, Will this code work? If not , Why?
class DupValue

{
public static void main{String[] args)
{
Vector v = new Yector():
v_add("Delhi™):
v.add("Mumbai”):
v.add("Calcutta™):
v.add{"Chennai~):
v.add("Delhi™):
Vector tempVector = new Vector():
String tmpYalue:
for (int j = 0;j<= v.size(); j++)
{
tmpValue = (5tringlv.elementAt(j);
if(tmpValue!=null) {
if{ tmpVector.isEmpty())
tmpVector . addE lement (tmpValue) ;
if(tmpVector. indexOf (tmpValue)==-1){
tmpVector . addETement (tmpValue): }}
!
for{int j = 0: j < tmpVector.sizel(): j++) {
sSystem.out . print(tmpVector.elementAt(j));
}
}
}

11.2 The class given below has been saved in the folder “circle”, Will the program run?
package Circle:

class NewCircle

{
public void draw(){}

public void getRadius(}{)}

public static void main{String args[]1)
{

Copyrighted material

206

System.out.printin(”Package Creation done”):
)
}
11.3 The code uses the class defined above, Class ImportClass 15 not defined in circle folder, Will the code run
without giving any errors?
import circle. Newlircle:
class ImportClass

{
public static void main(String[] args)
{
circle.NewCircle nc=new circle.NewCircle():
System.out . printin{“Hello World!™);
]
!

11.4 The method draw() in NewCircle has been set as private. Class SamePackage is in the same package as
NewCircle. Will the class be able to use the method?
package circle;
import circle. NewCircle:

class SamePackage
{
public static void main(5tring[] args)

{
HewCircle no=new MNewCirclel):

nc.draw():

'
}

11.5 Importing a complete package with all its classes has been demonstrated in the program. Will the class
compile?
import circle:;

class ImportClass

{
public static void main{String[] args)

{
circle. NewCircle nc=new circle. NewCircle():
System. out . printin{“Hello World!");

Copyrighted material

Multithreaded
Programming

@ 12.1 Introduction

Those who are familiar with the modern operating systems such as Windows 95 and Windows XP may
recognize that they can execute several programs simultaneously, This ability is known as multitasking.
In system'’s terminology, it is called multithreading.

Multithreading 15 a conceptual programming paradigm where a program (process) is divided into
two or more subprograms (processes), which can be implemented at the same time in parallel. For
example, one subprogram can display an animation on the screen while another may build the next
animation to be displayed. This is something similar to dividing a task into subtasks and assigning
them to different people for execution independently and simultaneously.

In most of our computers, we have only a single processor and therefore, in reality, the processor 1s
doing only one thing at a time. However, the processor switches berween the processes so fast that it
appears to human beings that all of them are being done simultaneously.

Java programs that we have seen and discussed so far contain only a single sequential flow of
control. This is what happens when we execute a normal program. The program begins, runs through a
sequence of executions, and finally ends. At any given point of time, there is only one statement under
execution.

A thread is similar to a program that has a single flow of control. It has a beginning, a body, and an
end, and executes commands sequentially. In fact, all main programs in our carlier examples can be
called single-threaded programs. Every program will have at least one thread as shown in Fig. 12.1.

A unigue property of Java is its support for multithreading. That is, Java enables us to use multiple
flows of control in developing programs. Each flow of control may be thought of as a separate tiny

program (or module) known as a thread that runs in parallel to others as shown in Fig. 12.2. A program
that contains multiple flows of control is known as multithreaded program. Figure 12.2 illustrates a

Java program with four threads, one main and three others. The main thread is actually the main
method module, which is designed to create and start the other three threads, namely A, B and C,

{dan ABC
- Baginning
B Single-threaded body
................... . u.r E!Hﬂ.l‘hﬂ
I ¥ - End
}

IFIgi1200° Single-threaded program

Once initiated by the main thread, the threads A, B, and C run concurrently and share the resources
jointly. It is like people living in joint families and sharing certain resources among all of them. The
ability of a language to support multithreads is referred to as concurrency. Since threads in Java are
subprograms of a main application program and share the same memory space, they are known as
lightweight threads or lightweight processes.

It is important to remember that “threads running in parallel” does not really mean that they actually
run at the same time. Since all the threads are running on a single processor, the flow of execution is
shared between the threads. The Java interpreter handles the switching of control between the threads
in such a way that it appears they are running concurrenthy.

Multithreading is a powerful programming tool that makes Java distinctly different from its fellow
programming languages. Multithreading is useful in a number of ways. It enables programmers to do
multiple things at one time. They can divide a long program (containing operations that are
conceptually concurrent) into threads and execute them in parallel. For example, we can send tasks
such as printing into the background and continue to perform some other task in the foreground. This
approach would considerably improve the speed of our programs.

Threads are extensively used in Java-enabled browsers such as HotJava. These browsers can
download a file to the local computer, display a Web page in the window, output another Web page to
a printer and so on.

Any application we are working on that requires two or more things to be done at the same time is
probably a best one for use of threads.

Copyrighted maierial

Main Thraad
Main method
module
stan slar start
L
fewitching) switching|
Thraad A Thread B Thread C

12.2 Creating Threads

Creating threads in Java is simple. Threads are implemented in the form of objects that contain a
method called run(). The run() method is the heart and soul of any thread. It makes up the entire body
of a thread and is the only method in which the thread’s behaviour can be implemented. A typical

run{) would appear as follows:

public void run{)

{

- {statements for implementing thread)

210

"

The run{) method should be invoked by an object of the concerned thread. This can be achieved by
creating the thread and initiating it with the help of another thread method called start {).
A new thread can be created in two ways.

|. By creating a thread class: Define a class that extends Thread class and override its run()
method with the code required by the thread.

2. By converting a class to a thread: Define a class that implements Runnable interface, The
Runnable interface has only one method, run(), that is to be defined in the method with the
code to be executed by the thread.

The approach to be used depends on what the class we are creating requires. If it requires to extend
another class, then we have no choice but to implement the Runnable interface, since Java classes
cannot have two superclasses.

B 12.3 Extending the Thread Class

We can make our class runnable as thread by extending the class java.lang. Thread. This gives us
access to all the thread methods directly. It includes the following steps:

1. Declare the class as extending the Thread class.

2. Implement the run{) method that is responsible for executing the sequence of code that the
thread will execute,

3. Create a thread object and call the start() method to inihiate the thread execution.

Declaring the Class

The Thread class can be extended as follows:
class MyThread extends Thread

Now we have a new type of thread My Thread.

Implementing the run() Method

The run{) method has been inherited by the class MyThread. We have to override this method in
order to implement the code to be executed by our thread. The basic implementation of run() will look
like this:

public wvoid run{)

Multithreaded Programming 211

r

When we start the new thread, Java calls the thread s run() method, so it is the run() where all the
action takes place.

Starting New Thread

To actually create and run an instance of our thread class, we must write the following:
MyThread aThread = new MyThread():

aThread.starti): { invokes runi) method
The first line instantiates a new object of class MyThread. Note that this statement just creates the
object. The thread that will run this object is not yet running. The thread is in a newborn state.
The second line calls the start() method causing the thread to move into the runnable state. Then,
the Java runtime will schedule the thread to run by invoking its run{) method. Now, the thread is said
to be in the running state.

An Example of Using the Thread Class

Program 12.1 illustrates the use of Thread class for creating and running threads in an application.
The program creates three threads A, B, and C for undertaking three different tasks. The main method
in the ThreadTest class also constitutes another thread which we may call the *main thread™.

The main thread dies at the end of its main method. However, before it dies, it creates and starts all
the three threads A, B, and C. Note the statements like

new A{).start():

in the main thread. This 15 just a compact way of starting a thread. This 15 equivalent to:
A threadA = new Al };
threadA. start();

Immediately after the thread A is started, there will be two threads running in the program: the main
thread and the thread A. The start() method retumms back to the main thread immediately after invoking
the run{) method, thus allowing the main thread to start the thread B.

Program 12.1 Creating threads using the thread class
class A extends Thread

{
public void run()
{
for (int 1=1; j==h: {++)
{
System.out . printin{™\tFrom ThreadA : i = " + i);
]
System.out .printin(~Exit form A ~);
}
}
class B extends Thread
{

(Continued)

212

Program 121 (Coniinued)

public void run{ }

{

for{int j=1: j<=h. j++)

{
!

System.out .printIn{"Exit from B "):

}

System_out.printin{ \tFrom Thread B :j = " + }):

class B extends Thread

for(int k=1: k<=5; k++)

System.out . printin(*\tFrom Thread C : k = " + k);

System. out printin(~Exit from C 7);

{
public void runi)
{
{
}
}

class ThreadTest

public static void main{String args[1)

{

new A().start()

new B().start():
new C{).start():

}

Output of Program 12.1 would be:

First run
From
From
From
From
From
From
From
From
From
From
From
From

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

I e 0y 1 003 2 3

b Dad B Lad B Cad I = Pl = P

Copyrighted material

213

From Thread A g i = 5
Exit from A

From Thread B : J = 5
Exit from B

From Thread C : 4 = 5
Exit from C

Second run

From Thread A i - 1
From Thread A i = 2z
From Thread C K = 1
From Thread C k = P
From Thread A i = 3
From Thread A i = 4
From Thread B J = 1
From Thread B j = g
From Thread C K = 3
From Thread C k = 4
From Thread A i = 5
Exit from A

From Thread B k = 4
From Thread B] = 5
From Thread C k = 5
Exit from C

From Thread B : i = 5
Exit from B

Similarly, it starts C thread. By the time the main thread has reached the end of its main method,
there are a total of four separate threads running in parallel.

We have simply initiated three new threads and started them. We did not hold on to them any further.
They are running concurrently on their own. Note that the output from the threads are not specially
sequential. They do not follow any specific order. They are running independently of one another and
each executes whenever it has a chance. Remember, once the threads are staried, we cannot decide
with certainty the order in which they may execute statements. Note that a second run has a different
output sequence.

g 12.4 Stopping and Blocking a Thread

Stopping a Thread
Whenever we want to stop a thread from running further, we may do so by calling its stop{) method,
like:

aThread.stop().

This statement causes the thread to move to the dead state. A thread will also move to the dead state
automatically when it reaches the end of its method. The stop{) method may be used when the
premature death of a thread 15 desired.

214 progrng weh v A rver

Blocking a Thread

A thread can also be temporarily suspended or blocked from entering into the runnable and
subsequently running state by using either of the following thread methods:

sleep(} /1 blocked for a specified time
suspendi /! blocked until further orders
wait() {/ blocked until certain condition occurs

These methods cause the thread to go into the blocked (or mot-runnable) state. The thread will
returm to the runnable state when the specified time 15 elapsed in the case of sleep{), the resume{)
method is invoked in the case of suspend(), and the notify() method is called in the case of wait().

g 125 Life Cycle of a Thread

During the life time of a thread, there are many states it can enter. They include:

I. Newbormn state

2. Runnable state

3. Running state

4. Blocked state

3. Dead state

A thread is always in one of these five states. It can move from one state to another via a variety of
ways as shown in Fig. 12.3.

Wew Thread Newbarn
Start Mm
1 \\
| ~.
Active | slop
Thread Running Runnable /\——— « pead 'Ifh_:;:l
T ylald
1 -
Suspemd FESLME
sleap ity stop
waif
~
-

b Thrgdd

(Mot Runnable) Blocked |

" Fig. 123 State transition diagram of a thread

215

Newborn State

When we create a thread object, the thread is born and is said to be in newborn state, The thread is not
yet scheduled for running. At this state, we can do only one of the following things with it

s Schedule it for running using start() method.

¢ Kill it using stop() method.

If scheduled, it moves to the runnable state (Fig. 12.4). If we attempt to use any other method at this
stage, an exception will be thrown.

..l-." S
. Newbomn
P
start stop
_F 0
N)
Runnabile | Dead |
state | state

Mﬂ Scheduling a newbom thread

Runnable State

The runnable state means that the thread is ready for execution and is waiting for the availability of the
processor. That is, the thread has joined the queue of threads that are waiting for execution. If all
threads have equal priority, then they are given time slots for execution in round robin fashion, i.e.,
first-come, first-serve manner. The thread that relinquishes control joins the queue at the end and again
waits for its tum. This process of assigning time to threads is known as time-slicing.

However, if we want a thread to relinquish control to another thread to equal priority before its tumn
comes, we can do so by using the yield{) method (Fig. 12.5).

Fig. 128 ' Relinquishing control using yield() method

216

Running State

Running means that the processor has given its time to the thread for its execution. The thread runs
until it relinquishes control on its own or it is preempted by a higher priority thread. A running thread
may relinquish its control in one of the following situations,
1. It has been suspended using suspend() method. A suspended thread can be revived by using the
resume{) method. This approach 15 useful when we want to suspend a thread for some time due
to certain reason, but do not want to kill it.

suspend
Runniing Runnabile Suspended

m Relinguishing control using suspend|) method

2. It has been made to sleep. We can put a thread to sleep for a specified time period using the
method sleep(rime) where time is in milliseconds. This means that the thread 15 out of the queue
during this time period. The thread re-enters the runnable state as soon as this time period is

elapsed.

sheap(l)

Running Runmnabie Suspanded
FIPA2T Relinquishing control using sleep() method

3. It has been told to wait until some event occurs. This is done using the wait{) method. The
thread can be scheduled to run again using the notify() method.

Rurnnakbe Waiting

”{m Relinquishing control using wait() method

Copyrighted maierial

217

Blocked State

A thread 15 said to be blocked when it is prevented from entering into the runnable state and
subsequently the running state. This happens when the thread is suspended, sleeping, or waiting in
order to satisfy certain requirements. A blocked thread is considered “not runnable™ but not dead and
therefore fully qualified to run again.

Dead State

Every thread has a life cycle. A running thread ends its life when it has completed executing its run{)
method. It is a natural death. However, we can kill it by sending the stop message to it at any state thus
causing a premature death to it. A thread can be killed as soon it is born, or while it is running, or even
when it is in “not runnable™ (blocked) condition.

ﬂ‘_

A

@ 12.6 Using Thread Methods

We have discussed how Thread class methods can be used to control the behaviour of a thread. We
have used the methods start() and run() in Program 12.1. There are also methods that can move a
thread from one state to another. Program 12.2 illustrates the use of vield(), sleep({) and stop()
methods. Compare the outputs of Programs 12.1 and 12.2.

Program 12.2 Use of yield(), stop(), and sleep() methods

class A extends Thread

{
public wvoid run{)
{
for{int i = 1; d==h; 1i++)
{
if{i==1) yield();
system.out.printin{“\tFrom Thread A : i = 7 +i);
}
System.out.printin(“exit from A 7);
}
}

E‘Iass B extends Thread
i public woid run{)
{ for(int i=1; je=5; j++)
{ System.out.printin{“\tFrom Thread B : j = ° + j):
if(J==3) stopl)

(Continuwed)

218

Program 12.2 (Continued)
System_out_printin{“Exit from B ");

Java: A Primer

}
}

class C extends Thread
public wvoid run{)

for (int k=1: k<=5; k++)

{
System.out.printin{ ‘tFrom Thread C : k = = +k);
ifik==1}
try
sleep(1000):
}
catch (Exception e)
{
}
}
System.out.printIn{"Exit fram C ")
}
}
class ThreadMethods
{
public static void main(String args[]}
{
A threaddh = new A[):
B threadB = new B(J:
C threadC = new C{):
System.out.printin{~5Start thread A"):
threadA.start();
System_out printin{"5tart thread B7):
threadB. start();
System.out.printin{-Start thread C"):
threadC.start():
System. out.printin{"End of main thread”):
}
}

Copyrighted material

Multithreaded Programming 219

Here 1s the output of Program 12.2:

Start thread A
Start thread B
Start thread C
From Thread
From Thread
From Thread
From Thread
End of main thr
From Thread
Fram Thread
From Thread
From Thread
From Thread
Exit from A
From Thread
fFrom Thread
From Thread
From Thread
Exit from C

Program 12.2 uses the yield() method in thread A at the iteration i = 1. Therefore, the thread A,
although started first, has relinquished its control to the thread B, The stop() method in thread B has
killed it after implementing the for loop only three times. Note that it has not reached end of run{)
method. The thread C started sleeping after executing the for loop only once. When it woke up (after
1000 milliseconds), the other two threads have already completed their runs and therefore was running
alone. The main thread died much earlier than the other three threads.

= - o m

— e s L
]

P b= o3 ==

m

ad

= = I Oy
—e e . oty

|
LM P b fad b

[e B e T
ol ol
nunnn
LMo L P

55 12.7 Thread Exceptions

MNote that the call to sleep() method is enclosed in a try block and followed by a eatch block. This is
necessary because the sleep() method throws an exception, which should be caught. If we fail to catch
the exception, program will not compile.

Java run system will throw IllegalThreadStateException whenever we attempt to invoke a method
that a thread cannot handle in the given state. For example, a sleeping thread cannot deal with the
resume{) method because a sleeping thread cannot receive any instructions. The same is true with the
suspend() method when it is used on a blocked (Not Runnable) thread.

Whenever we call a thread method that is likely to throw an exception, we have to supply an
appropriate exception handler to catch it. The catch statement may take one of the following forms:

catch (ThreadDeath &)

.......... f Killed thread

220 Programming with Java: A Primer
catch (InterruptedException e)

......... : Ff Cannot handle it in the curment state

catch (IllegalArgumentExceptior e}

.......... {1 Megal method argument

.......... {1 Any other

Exception handling is discussed in detail in Chapter 13.

@ 12.8 Thread Priority

In Java, each thread is assigned a priority, which affects the order in which it is scheduled for running.
The threads that we have discussed so far are of the same prionity. The threads of the same prionty are
given equal treatment by the Java scheduler and, therefore, they share the processor on a first-come,

first-serve basis.
Java permits us to set the priority of a thread using the setPriority() method as follows:

ThreadName _ setPriaority(intNumber):

The intNumber is an integer value to which the thread’s priority is set. The Thread class defines
several priority constants:

MIN PRIORITY - 1
NORM _PRIORITY - 5
MAX _PRIORITY - 10

The intNumber may assume one of these constants or any value between 1 and 10. Note that the
default setting is NORM_PRIORITY.,

Most user-level processes should use NORM PR[GE]T"]" plus or minus 1. Back-ground tasks such
as network 1'0 and screen repainting should use a value very near to the lower limit. We should be very
cautious when trying to use very high prionty values. This may defeat the very purpose of using
multithreads.

By assigning priorities to threads, we can ensure that they are given the attention (or lack of it) they
deserve, For example, we may need to answer an input as quickly as possible. Whenever multiple
threads are ready for execution, the Java system chooses the highest priority thread and executes it. For
a thread of lower priority to gain control, one of the following things should happen:

Copyrighted material

'+ Myfithmpaded Programming, 21

1. It stops running at the end of run().
2. It i1s made to sleep using sleep{).
3. It is told to wait using wait{).

However, if another thread of a higher priority comes along, the currently running thread will be
preempted by the incoming thread thus forcing the current thread to move to the runnable state.
Remember that the highest pnonty thread always preempts any lower prionty threads.

Program 12.3 and its output illustrate the effect of assigning higher priority to a thread. Note that
although the thread A started first, the higher priority thread B has preempted it and started printing the
output first. Immediately, the thread C that has been assigned the highest priority takes control over the
other two threads. The thread A is the last to complete.

Program 12.3 Use of priority in threads
class A extends Thread

public void run()

{
system.out . printin(threadA started™):
for{int i=1; i<=4; i++)
{
system_out.printin{“\tFrom Thread A : 1 = " +i):
}
System.out.printIn{“Exit from A ~):
}

}

class B extends Thread

public woid runi }

{
System.out.printin{“threadB started”):
for(int J=1; j<=4. j++)
1
system.out.printin(\tFrom Thread B : jJ = ~ + 3):
}
System_ out.printin(“Exit from B)
}
}
class C extends Thread
{
public void run{)
{
System._out.printin({ “threadC started”):
for{int k=1: k<=4; k++)
|
System.out.printin(“\tFrom Thread C : k = ° + kJ:
I

{ Continued)

222

PrgeipR SRR

Program 12.3 (Continwed)

System.out.printin(“Exit from C ");

}
class ThreadPriority
{
public static void main{String args[1)
{
A threadA = new A({)
B threadB = new B{);
C threadC = new C{ J;
threadC . setPriority(Thread. MAX PRIORITY):
threadB. setPriority(threadA. getPriority(J+1):
threadA setPricirty(Thread MIN PRIORITY):
System.out . printin(“Start thread A~):
threadA.start(}:
system_out . printin(”S5tart thread B7):
threadB . start{ };
System.out . printin{“5tart thread C7):
threadC.start():
System.out.printin{"End of main thread”):
]
]
Output of Program 12.3:

Start thread A
Start thread B
Start thread C
threadB started

From Thread B
From Thread B

[y S

threadlC started

From Thread C
From Thread C
Fraom Thread C
From Thread C

M MM M SN
o Lad P

Exit from C
End of main thread

From Thread B
From Thread B

i
s Lad

Copyrighted material

Exit from B

threadd started
From Thread A
From Thread A
From Thread A
From Thread A

Exit from A

e Gl Pud

i
i
i
i

L]

12.9 Synchronization

So far, we have seen threads that use their own data and methods provided mside their run() methods.
What happens when they try to use data and methods outside themselves? On such occasions, they may
compete for the same resources and may lead to serious problems. For example, one thread may try to
read a record from a file while another is still writing to the same file, Depending on the situation, we
may get strange results. Java enables us to overcome this problem using a technique known as
synchronization.

In case of Java, the keyword synchronised helps to solve such problems by keeping a watch on such
locations. For example, the method that will read information from a file and the method that will
update the same file may be declared as synchronized. Example:

synchronized void update()

. !/ code here is synchronized

When we declare a method synchronized, Java creates a “monitor” and hands it over to the thread
that calls the method first time. As long as the thread holds the monitor, no other thread can enter the
synchronized section of code. A monitor is like a key and the thread that holds the key can only open
the lock.

It is also possible to mark a block of code as synchronized as shown below:
synchronized (lock-object)

.......... { code here is synchronized

Whenever a thread has completed its work of using synchronized method (or block of code), it will
hand over the monitor to the next thread that is ready to use the same resource.

An interesting situation may occur when two or more threads are waiting to gain control of a
resource. Due to some reasons, the condition on which the waiting threads rely on to gain control does
not happen. This results in what is known as deadlock. For example, assume that the thread A must
access Method] before it can release Method2, but the thread B cannot release Method] until it gets
hold of Method2. Because these are mutually exclusive conditions, a deadlock occurs. The code below
illustrates this:

Thread A
synchronized method2()
{
synchronized methodl()
{
'
}
Thread B

synchronized methodl(

-I

synchronized method2(

il

- 12.10 Implementing the ‘Runnable’
Interface

We stated earlier that we can create threads in two ways: one by using the extended Thread class and
another by implementing the Runnable interface. We have already discussed in detail how the Thread
class is used for creating and running threads. In this section, we shall see how o make use of the
Runnable interface to implement threads.

The Runnable interface declares the run{) method that is required for implementing threads in our
programs. To do this, we must perform the steps listed below:

. Declare the class as implementing the Runnable interface.

2. Implement the run{) method.

3. Create a thread by defining an object that 15 instantiated from this “runnable™ class as the target
of the thread.

4. Call the thread’s start{) method to run the thread.

Program 12.4 illustrates the implementation of the above steps. In main method, we first create an
instance of X and then pass this instance as the initial value of the object threadX (an object of Thread
Class). Whenever, the new thread threadX starts up, its ran() method calls the run{) method of the
target object supplied to it. Here, the target object is runnable. I the direct reference to the thread
threadX is not required, then we may use a shortcut as shown below:

new Thread (new X(¥).start(J:

Copyrighted maierial

led! Programming 225

Program 12.4 Using Runnable interface

class ¥ implements Runmnable /1 Step 1
{ public wvoid rum() /! Step 2
{ for{int 1 = 1; 1==10; 1i++)
; System.out.printin("\tThreadX : ° +i):

System.out.printIn{"End of Thread{"):

}

class RunnableTest

public static wvoid main{S5tring args[1)

{
¥ runnable = new X{)
Thread thready = new Thread(runnable): /1 Step 3
threadX.start(}: I Step 4
System.out.printin{"End of main Thread™):

}

}

Output of Program 12.4

End of main Thread
ThreadY
ThreadX
Threads -
ThreadX -
Threads -
Thready :
ThreadX
ThreadX
ThreadX
Thready

End of ThreadX

@ 12.11 Summary

A thread is a single line of execution within a program. Multiple threads can run concurrently in a
single program. A thread is created either by subclassing the Thread class or implementing the
Runnable interface. We have discussed both the approaches in detail in this chapter. We have also
learned the following in this chapter:

* How to synchronize threads,

* How to set priorities for threads, and

* How to control the execution of threads

[t === B W= LU o R - P O L

g i s A Prime

12.1 What is a thread?

122 Whutum:djf&rmn:hﬂwmmulupm:mmgandmﬂuﬂamndmg?wmmmh:dmmm’q:l:mcnt
these in a program?

123 What Java interface must be implemented by all threads?

124 How do we start a thread?

12.5 What are the two methods by which we may stop threads?

12.6 What is the difference between suspending and stopping a thread?
12.7 How do we set priorities for threads?

12.8 Describe the complete life cycle of a thread.

12.9 What is synchronization? When do we use it?

12.10 Develop a simple real-life application program o illustrate the use of multithreads,
————— —_— — =

12,1 Sleep() method has been demonstrated in the following code. Will this code compile successfully?
class A extends Thread

public veoid run()

{
for{int i=1l: i=<=5; i++)
{
System.out.printIn{™“tFrom threadA. 1 = " +i}):
Thread.sleep{100};
]
}
class ThreadClass
{
public static void main(5tring[] args)
{
A a = new Al);
a.start{);
}
}

Copyrighted material

12.2 Debug the given code which creates two different classes, one extending “Thread® class and other,
implementing ‘Runnable’ interface.
class multil extends Thread

{

public void run(}

for(int i=1: i<=5; i++)

{
1

System.out.printTn(\tFrom Thread 1 1 = " #1);

]
}:

class multi2 implements Runnable

public vold rund) h

{
for(int j=1; j<=5; j++)
{
System.out.printIn{ \tFrom Thread 1 j = = +j):
}
}
| ¥
class threadcheck
{
public static void main{String[] args)
{
multil ml = new multil():
ml.start():
multiZ mg = new multid():
me.start();
]
}

123 Will the code compile? If not, why?
class multil extends Thread

{ public void start()
{ for(int i=1: d<=h: i++)
{ System.out.printIn{"\tFrom Thread 1 i = " +i):
; }

class multi2 implements Runnable

(

Copyrighted material

=

public void start()

{
for(int Jj=1; Jj<=5; j++}
{
System.out .printin{“\tFrom Thread 1 j = " +j);
}
}
}:
class runthread
{
public static void main{String[] args)
{
multil ml = new multil():
ml.start();
}
}

124 The code given below calls the run{) method of two threads while setting their priority. Will this code
compile successfully? If not, comrect the code.
class tl1 extends Thread
public wvoid runi)

System. out . printin{“This is Threadl class™):

]
}
class t2 extends Thread
{
public woid run()
{
System_out.printIn{"This 15 Thread2 Class™):
}

public class ThreadP

public static wvoid main{Strimg s[])

{
tl t = new tl();
t2 tt = new t2():
t.setPriority{(Thread MIN PRIORITY):
tt.setPriority{Thread . MIN PRIORITY).
tl.run():
t2.run();

Copyrighted maierial

12.5 Prionty of a thread is defined in the given code. Debug the code.
class threadl extends Thread

{

public wvoid run()

{
System.out.printin{"This is Threadl class”):
}
}
class thread? extends Thread
{
public wvoid run()
{
System.out.printin({~This is ThreadZ Class™);
]
public class ThreadPrior
{

public static void main{String s[]}

I
threadl tl = new threadl()};
thread? t2 = new thread2()
tl.setPriority(Thread.Max Priority):
tl.rund):
t2.run():

Copyrighted material

Managing Errors and
Exceptions

f:_'
@ 13.1 Introduction

Rarely does a program run successfully at its very first attempt. It 1s common to make mistakes while
developing as well as typing a program. A mistake might lead to an error causing to program to produce
unexpected results. Errors are the wrongs that can make a program go wrong,

An error may produce an incorrect output or may terminate the execution of the program abruptly or
even may cause the system to crash. It is therefore important to detect and manage properly all the
possible error conditions in the program so that the program will not terminate or crash during
execution.

‘ 13.2 Types of Errors

Errors may broadly be classified into two categories:
» Compile-time errors '
* Run-time errors

Compile-Time Errors

All syntax errors will be detected and displayed by the Java compiler and therefore these errors are
known as compile-time errors. Whenever the compiler displays an error, it will not create the .class
file. It is therefore necessary that we fix all the errors before we can successfully compile and run the

program.

Managing Errors and Exceptions 231
Program 13.1 MNlustration of compile-time errors
{/* This program contains anm error */

class Errorl

{

public static void main{String args(])
{

}

System.out.printin{“Hello Java!™) // Missing;

The Java compiler does a nice job of telling us where the errors are in the program. For example, if
we have missed the semicolon at the end of print statement in Program 13.1, the following message
will be displayed in the screen:

Errorl.java :7: °: exspected
System.out.println ("Hello Java!")

1 error

We can now go to the appropriate line, correct the error, and recompile the program. Sometimes, a
single crror may be the source of multiple errors later in the compilation. For example, use of an
undeclared variable in a mumber of places will cause a series of ermors of type “undefined variable™. We
should generally consider the earliest errors as the major source of our problem. After we fix such an
error, we should recompile the program and look for other errors.

Most of the compile-time errors are due to typing mistakes. Typographical errors are hard to find.
We may have to check the code word by word, or ¢ven character by character. The most common
problems are:

Missing semicolons

Missing (or mismatch of) brackets in classes and methods
Misspelling of identifiers and keywords

Missing double quotes in strings

Use of undeclared variables

Incompatible types in assignments / initialization

Bad references to objects

Use of = in place of = = operator

And so on

- & § & 8 ® & & @

Other errors we may encounter are related to directory paths. An error such as
javac . command not found

means that we have not set the path correctly. We must ensure that the path includes the directory
where the Java executables are stored.

Run-Time Errors

Sometimes, a program may compile successfully creating the .class file but may not run properly. Such
programs may produce wrong resulis due to wrong logic or may terminate due to errors such as stack

overflow. Most common run-time errors are:

Dividing an integer by zero

Accessing an element that is out of the bounds of an array

Trying to store a value into an array of an incompatible class or type
Trying to cast an instance of a class to one of its subclasses

Passing a parameter that is not in a valid range or value for a method
Trying to illegally change the state of a thread

Attempting to use a negative size for an array

Using a null object reference as a legitimate object reference to access a method or a variable.
Converting invalid string to a number

Accessing a character that is out of bounds of a string

* And may more

When such errors are encountered, Java typically generates an ermor message and aborts the
program. Program 13.2 illustrates how a run-time error causes termination of execution of the program.

Program 13.2 llustration of run-time errors

class Errord
{
public static void main{5tring args[1)
{
int a = l0;
int b = 5;
int ¢ = b5;
int x = a/(b-c); { Division by zero
System.out.printin{™x = = + x):
int y = a/{b+c):
System.out .printIn(®y = ~ + y):

Program 13.2 is syntactically correct and therefore does not cause any problem during compilation.
However, while executing, it displays the following message and stops without executing further
statements.

java.lang.ArithmeticException: / by zero
at ErrorZ.main(Errord. java:10)

When Java run-time tries to execute a division by zero, it generates an error condition, which causes
the program to stop after displaying an appropriate message.

=

L 2

=

13.3 Exceptions

An exception is a condition that is caused by a run-time error in the program. When the Java interpreter
encounters an error such as dividing an integer by zero, it creates an exception object and throws it (i.e.
informs us that an error has occurred).

233

L R

If the exception object is not caught and handled properly, the interpreter will display an ermor
message as shown in the output of Program 13.2 and will terminate the program. If we want the
program to continue with the execution of the remaining code, then we should try to catch the exception
ohject thrown by the ermor condition and then display an appropriate message for taking comrective
actions. This task is known as exception handling.

The purpose of exception handling mechanism is to provide a means to detect and report an
“exceptional circumstance” so that appropnate action can be taken. The mechanism suggests
incorporation of a separate error handling code that performs the following tasks:

1. Find the problem (Hir the exception).

2. Inform that an error has occurred (Throw the exception)
3. Rececive the error information (Cafch the exception)
4. Take corrective actions (Handle the exception)

The error handling code basically consists of two segments, one to detect errors and to throw
exceptions and the other to catch exceptions and to take appropriate actions.

When writing programs, we must always be on the lookout for places in the program where an
exception could be generated. Some common exceptions that we must watch out for catching are listed

in Table 13.1.

T R TR r T .
- A" -Eﬁ%ﬂ L,
T A, o) Y i 4 o, ey

Exception Tvpe

ArithmeticException
Array IndexOutDfBoundsException
ArraystoreException

F1ileNotFoundException
I0Exception

Kul 1PointerException
NumberFormatException

OutOfMemoryExcept ion
SecurityException

StackOverF lowException
stringIndexOutOfBoundsException

Caused by math errors such as division by zero

Caused by bad array indexes

Caused when a program tries to store the wrong type of
data in an array

Caused by an attempt to access a nonexistent file
Caused by general 1/0 failures, such as inability to read
from a file

Caused by referencing a mall object

Caused when a conversion between strings and number
fails

Caused when there’s not enough memory to allocate a
new object

Caused when an applet tries to perform an action not
allowed by the browser’s security setting

Caused when the sysiem runs out of stack space

Caused when a program attempts to access a nonexistent
character position in 4 string

Copyrighted material

@ 13.4 Syntax of Exception Handling
Code

The basic concepts of exception handling are throwing an exception and catching it. This is illustrated
in Fig. 13.1.

try Block l
| Statermen that Exception object
fﬁ"' Causes an exception | creabor
, |
exceplion |
,
H*--. . caich Block
Statement that Excaption
handles the exception | handier
fw Exception handling mechanism

Java uses a keyword try to preface a block of code that 15 likely to cause an error condition and
“throw™ an exception. A catch block defined by the keyword eatch “catches™ the exception “thrown™
by thee try block and handles it appropnately. The catch block is added immediately after the try block.
The following example illustrates the use of simple try and catch statements:

try
{

statement : /{ generates an exception
)
catch (Exception-type e)
{

statement : /[processes the exceplion
]

The try block can have one or more statements that could generate an exception. If any one statement
generates an exception, the remaining statements in the block are skipped and execution jumps to the
catch block that is placed next to the try block.

Hidden page

Hidden page

Hidden page

Program 13.5 (Continued)

catch(ArithmeticException e)

{

System.out.printIn{ Division by Zzero™):
|

J
catch(ArrayIndexDutOfBoundsException e)

{
i

catchi{ArrayStoretxception &)

{

}
int y = all] / al0]:
System. out _printin{“y = * + y).

System. out.printIn{ Array index error”):

System. out.printin{"Wrong data type"):

Program 13.5 uses a chain of catch blocks and, when run, produces the following output:
Array index error
y =2
Mote that the array element a[2] does not exist because array a is defined to have only two elements,
a[0] and a[1]. Therefore, the index 2 is outside the array boundary thus causing the block
Catch(ArraylIndexQutOfBoundsException el
to catch and handle the error. Remaiming catch blocks are skaipped.

% 13.6 Using Finally Statement

Java supports another statement known as finally statement that can be used to handle an exception
that is not caught by any of the previous catch statements. finally block can be used to handle any
exception generated within a try block. [t may be added immediately after the try block or afier the last
catch block shown as follows:

try try

{ {

})

finally catch (....)

Copyrighted maierial

catch {(....)

1;*1'r1.al'lg.I
{

}

When a finally block is defined, this is guaranteed to execute, regardless of whether or not in
exception is thrown. As a result, we can use it to perform certain house-keeping operations such as
closing files and releasing system resources.

In Program 13.5, we may include the last two statements inside a finally block as shown below:

finally
{

int v = a[1)/al0]:
System out . printin{"y = = +y):

}
This will produce the same output.

@ 13.7 Throwing Our Own Exceptions

There may be times when we would like to throw our own exceptions. We can do this by using the
keyvword throw as follows;

throw new Thorwable subclass:

Examples:
throw new Arithmeticbxception():
throw new NumberFormatException{);

Program 13.6 demonstrates the use of a user-defined subclass of Throwable class. Note that
Exception is a subclass of Throwable and therefore MyException is a subclass of Throwable class.
An object of a class that extends Throwable can be thrown and caught.

Program 13.6 Throwing our own exception

import java.lang.Exception;
class MyException extends Exception

{ Continued)

Program 13.6 {Conrinued)
{

MyException(5tring message)

{

|
} |
class TestMyException

'i

superimessage)

public static void main{Strings args[1)
{ .
int x = &y = 1000;
try

float z = (float) = / (float) ¥
if{z < 0.01)
{
throw new MyException{“Mumber is too small™);

'
it
¥

catch (MyException e}

{
System.out.printin{ Caught my exception’)};
System.out printin{e. getMessage()}):
*1nally
{
System.out.printinc™l am always here™);
}

A run of program 13.6 produces:

Caught my exception
Number 15 too small
[am always here
The object e which contains the error message “Number is too small” is caught by the cateh block
which then displays the message using the getMessage() method.
Note that Program 13.6 also illustrates the use of finally block. The last line of output is produced
by the finally block.

@ 13.8 Using Exceptions for Debugging

As we have seen, the exception-handling mechanism can be used to hide errors from rest of the
program. It is possible that the programmers may misuse this technique for hiding errors rather than
debugging the code. Exception handling mechanism may be effectively used to locate the type and

Copyrighted material

Hidden page

Hidden page

Managing Erors and Exceptions 243

System.out.printIn(“String is right™):
else

throw new Exception(™Invalid Strimg™};
}

)

13.4 Custom exception has been created in the code given below. Comect the code.
class myexception extends Exception

{
myexception({5tring s)
]
super{s).
}
}
class excepd
{
public static void main{5tring args(])
if{args[0]=="Hello™)
System_out.printin{*String 1s right");
else
try
{
throw new myexception{“Invalid String");
lcatchimyexception ex)
System.out . printini{ex.getmessage(});
}
}
}
13.5 The program calculates sum of two numbers inputted as command-line arguments. When will it give an
exception?
class excep
public static void main(String [Jargs)
{
Try {
int n = Integer.parselnt(args[0]):
tnt nl = Integer.parselnt(args{1]):
int n2 = n+nl;
System.out.printIn{"Sum is: = + n2):
!
catch({NumberformatException ex)
{
System. out .printinfex):
}
}

Copyrighted material

>

-

) —1
< Applet Programming

f;g 14.1 Introduction

Applets are small Java programs that are primarily used in Internet computing. They can be transported
over the Internet from one computer to another and run using the Applet Viewer or any Web browser
that supports Java. An applet, like any application program, can do many things for us. It can perform
arithmetic operations, display graphics, play sounds, accept user input, create animation, and play
interactive games.

Java has revolutionized the way the Internet users retrieve and use documents on the world wide
network. Java has enabled them to create and use fully interactive multimedia Web documents. A web
page can now contain not only a simple text or a static image but also a Java applet which, when run,
can produce graphics, sounds and moving images. Java applets therefore have begun to make a
significant impact on the World Wide Web,

Local and Remote Applets

We can embed applets into Web pages in two ways. One, we can write our own applets and embed
them into Web pages. Second, we can download an applet from a remote computer system and then
embed it into a Web page.

An applet developed locally and stored in a local system is known as a local applet. When a Web
page is trying to find a local applet, it does not need to use the Internet and therefore the local system
does not require the Internet connection. [t simply searches the directories in the local system and
locates and loads the specified applet (see Fig. 14.1).

A remote appler 18 that which is developed by someone else and stored on a remote computer
connected to the Internet. If our system is connected to the Internet, we can download the remote applet
onto our system via at the Internet and run it (see Fig. 14.2).

In order to locate and load a remote applet, we must know the applet’s address on the Web. This

address is known as Uniform Resowrce Locator {URL) and must be specified in the applet’s HTML
document as the value of the CODEBASE attribute (see Section 14.11). Example:

Local Applet

— [=

Local Compuler

- Fig.14.1 Loading local applets

o al

Iribermsed
— |l L=]
— 1 —3
Local Computar Applat Remoia Computer
(Cliant) (Sarser)

Fig. 142 Loading a remote applet

CODEBASE = http : // www, netserve.com / applets

In the case of local applets, CODEBASE may be absent or may specify a local directory.

In this chapter we shall discuss how applets are created, how they are located in the Web documents
and how they are loaded and run in the local computer.

@ 14.2 How Applets Differ from Applications

Although both the applets and stand-alone applications are Java programs, there are significant
differences between them. Applets are not full-featured application programs. They are usually written
to accomplish a small task or a component of a task. Since they are usually designed for use on the
Internet, they impose certain limitations and restrictions in their design.

Applets do not use the main{) method for initiating the execution of the code. Applets, when
loaded, automatically call certain methods of Applet class to start and execute the applet code.
Unlike stand-alone applications, applets cannot be run independently. They are run from inside
a Web page using a special feature known as HTML tag.

Applets cannot read from or write to the files in the local computer.

Applets cannot communicate with other servers on the network.

Applets cannot run any program from the local computer.

Applets are restricted from using libraries from other languages such as C or C++, (Remember,
Java language supports this feature through native methods).

All these restrictions and limitations are placed in the interest of security of systems. These
restrictions ensure that an applet cannot do any damage to the local system.

B 14.3 Preparing to Write Applets

Until now, we have been creating simple Java application programs with a single main() method that
created objects, set instance variables and ran methods. Here, we will be creating applets exclusively
and therefore we will need to know

When to use applets,

How an applets works,

What sort of features an applet has, and

Where to start when we first create our own applets.

First of all, let us consider the situations when we might need to use applets.

When we need something dynamic to be included in the display of a Web page. For example, an
applet that displays daily sensitivity index would be useful on a page that lists share prices of
various companies or an applet that displays a bar chart would add value to a page that contains
data tables.

When we require some “flash” outputs. For example, applets that produce sounds, amimations or
some special effects would be useful when displaying certain pages.

When we want to create a program and make it available on the Internet for us by others on their
computers.

Before we try to write applets, we must make sure that Java is installed properly and also ensure that
either the Java appletviewer or a Java-enabled browser is available. The steps involved in developing
and testing in applet are:

1.

Building an applet code (.java file)

2. Creating an executable applet (.class file)

L L

Designing a Web page using HTML tags
Preparing <APPLET=> tag

Incorporating <APPLET= tag into the Web page
Creating HTML file

. Testing the applet code

Each of these steps is discussed in the following sections.

Appist Fepgiaening 7
"—: =
"55 14.4 Building Applet Code

It 1s essential that our applet code uses the services of two classes, namely, Applet and Graphices from
the Java class library. The Applet class which is contained in the java.applet package provides life
and behaviour to the applet through its methods such as imit{), start{) and peint{). Unlike the
applications, where Java calls the main({) method directly to initiate the execution of the program,
when an applet is loaded, Java automatically calls a series of Applet class methods for starting,
running, and stopping the applet code. The Applet class therefore maintains the [ifecyele of an applet.

The paint() method of the Applet class, when it is called, actually displays the result of the applet
code on the screen. The output may be text, graphics, or sound. The paint() method, which requires a
Graphies object as an argument, is defined as follows:

public void paint (Graphics g)

This requires that the applet code imports the java.awt package that contains the Graphies class.
All output operations of an applet are performed using the methods defined in the Graphics class. [t is
thus clear from the above discussions that an applet code will have a general format as shown below: -

import java.awt. *:
import java.applet.*:

The appletclassname is the main class for the applet. When the applet is loaded, Java creates an
instance of this class, and then a series of Applet class methods are called on that instance to execute
the code. Program 14.1 shows a simple Hellolava applet.

Program 14.1 The HelloJava applet

import java.awt.*®;

import java.applet.*;

public class HelloJava extends Applet
{

’ public void paint (Graphics g)

{ Continued)

Hidden page

Hidden page

250 . Programming with Java: A Primer
public void init{)

.......... (Action)

Running State

Applet enters the running state when the system calls the start() method of Applet Class. This occurs
automatically after the applet is initialized. Starting can also occur if the applet 15 already in *stopped™
{idle) state. For example, we may leave the Web page containing the applet temporarily to another page
and return back to the page. This again starts the applet running. Note that, unlike init{) method, the
start() method may be called more than once. We may override the start() method to create a thread
to control the applet.

public voids start()

.......... et ion:

Idle or Stopped State

An applet becomes idle when it is stopped from running. Stopping occurs automatically when we leave
the page containing the currently nmning applet. We can also do so by calling the stop() method
explicitly, If we use a thread to run the applet, then we must use stop() method to terminate the thread.
We can achieve this by overmnding the stop() method;

public void stop()

(Action)

Dead State

An applet is said to be dead when it is removed from memory. This occurs automatically by invoking
the destroy() method when we quit the browser. Like initialization, destroving stage occurs only once
in the applet’s life cycle. If the applet has created any resources, like threads, we may override the
destroy() method to clean up these resources.

public void destroy()

[Action)

Applet Programeming 251
Display State

Applet moves o the display state whenever it has o perform some output operations on the screen.
This happens immediately after the applet enters into the running state. The paint{) method is called to
accomplish this task. Almost every applet will have a paint() method. Like other methods in the life
cycle, the default version of paint{) method does absolutely nothing. We must therefore override this
method if we want anything to be displayed on the screen. -

public wvoid paint (Graphics g)

.......... (Display statements)

It is to be noted that the display state is not considered as a part of the applet’s life cycle. In fact, the
paint() method is defined in the Applet class. It is inherited from the Component class, a super class
of Applet.

% 14.6 Creating an Executable Applet

Executable applet is nothing but the .class file of the applet, which is obtained by compiling the source
code of the applet. Compiling an applet 1s exactly the same as compiling an application. Therefore, we
can use the Java compiler to compile the applet.

Let us consider the HelloJava applet created in Section 14.4. This applet has been stored in a file
called HelloJava.java. Here are the steps required for compiling the HelloJava applet.

1. Move to the directory containing the source code and type the following command:
javac HellaJdava.java
The compiled output file called HelloJava.class is placed in the same directory as the source.

If any error message 15 received, then we must check for errors, correct them and compile the
applet again,

7o 5

% 14.7 Designing a Web Page

Recall the Java applets are programs that reside on Web pages. In order to run a Java applet, it is first
necessary to have a Web page that references that applet.

A Web page is basically made up of text and HTML tags that can be interpreted by a Web browser
or an applet viewer. Like Java source code, it can be prepared using any ASCII text editor. A Web page
is also known as HTML page or HTML document. Web pages are stored using a file extension . html
such as MyApplet.html. Such files are referred to as HTML files. HTML files should be stored in the
same directory as the compiled code of the applets.

As pointed out earlier, Web pages include both text that we want to display and HTML tags
({commands) to Web browsers. A Web page is marked by an opening HTML tag < HTML> and a
closing HTML tag </HTML> and is divided into the following three major sections:

Hidden page

|

Mote that tags <....> containing HTML commands usually appear impairs such as <HEAD=>
and </HEAD>, and <TITLE= and </TITLE>. A slash (/) in a tag signifies the end of that tag section.

Body Section

After the head section comes the body section. We call this as body section because this section
contains the entire information about the Web page and its behaviour, We can set up many options to
indicate how our page must appear on the screen (like colour, location, sound, etc.,). Shown below is a
simple body section:

<B0DY=>
<CENTER=
<H]> Welcome to the World of Applets <=/Hl=
</CENTER=
<RBR=
<APPLET ...=
</APPLET=
</BO0Y=>

The body shown above contans mstructions to display the message
Welcome to the World of Applets
followed by the applet output on the screen. Note that the <CENTER> tag makes sure that the text is
centered and <H | > tag causes the text to be of the largest size. We may use other heading tags <H2> to
<H#6> to reduce the size of letters in the text.

g 14.8 Applet Tag

Mote that we have included a pair of <APPLET...> and </APPLET=> tags in the body section discussed
above. The <APPLET ...> tag supplies the name of the applet to be loaded and tells the browser how
much space the applet requires. The ellipsis in the tag < APPLET ...= indicates that it contains certain
attributes that must specified. The <APPLET= tag given below specifies the minimum requirements to
place the HelloJava applet on a Web page:

<APPLET
CODE = hellodava.class
WIDTH = 400
HEIGHT = 200 =
</APPLET =

This HTML code tells the browser to load the compiled Java applet HelloJava.class, which is in the
same directory as the HTML file. And also specifies the display area for the applet output as 400 pixels
width and 200 pixels height. We can make this display area appear in the centre of the screen by using
the CENTER tags shown as follows:

Hidden page

255

@ 14.10 Running the Applet

Now that we have created applet files as well as the HTML file containing the applet, we must have the
following files in our current directory:
HelloJava.java

HelloJdava.class
HelloJdava.html

To run an applet, we require one of the following tools:

1. Java-enabled Web browser (such as Hotlava or Netscape)

2. Java appletviewer

If we use a Java-enabled Web browser, we will be able to see the entire Web page containing the
applet. If we use the appletviewer tool, we will only see the applet output. Remember that the
appletviewer is not a full-fledged Web browser and therefore it ignores all of the HTML tags except
the part pertaining to the running of the applet.

The appletviewer is available as a part of the Java Development Kit that we have been using so far.
We can use it to run our applet as follows:

appletviewer Hellodava html

Notice that the argument of the appletviewer is not the .java file or the .class file, but rather .html
file. The output of our applet will be as shown in Fig. 14.7.

Applet Viewer: HolloJava class

Hello Java

applatinader stared

Fig/ 147" Output of HelloJava applet by using appletviewer

g 14.11 More About Applet Tag

We have used the <APPLET= tag in its simplest form. In its simplest form, it merely creates a space of
the required size and then displays the applet output in that space. The syntax of the <APPLET= tag is
a little more complex and includes several attributes that can help us better integrate our applet into the
overall design of the Web page. The syntax of the <APPLET=> tag in full form is shown as follows:

Hidden page

Applet Progrmming =

Table 14.1 (Continued)

HSPACE=pixels Used only when ALIGN is set to LEFT or RIGHT, this attribute specifies
[(Optional) the amount of horizontal blank space the browser should leave
surrounding the applet.
VSPACE=pixels Used only when some vertical alignment is specified with the ALIGN
{Optional) attribute (TOP, BOTTOM, etc.,) VSPACE specifies the amount of
vertical blank space the browser should leave surrounding the applet.
ALT=alternate text Mon-Java browsers will display this text where the applet would
{Optional) normally go. This attribute is optional.

We summarise below the list of things to be done for adding an applet to a HTML document:

. Insert an <APPLET> tag at an appropriate place in the Web page.
. Specify the name of the applet’s .class file.
. If the .class file is not in the current directory, use the codebase parameter to specify

the relative path if file 1s on the local system, or

the Uniform Resource Locator (URL) of the directory containing the file if it is on a remote
computer.

Specify the space required for display of the applet in terms of width and height in pixels.

Add any user-defined parameters using <PARAM> tags.

Add alternate HTML text to be displayed when a non-Java browser is used.

Close the applet declaration with the </APPLET= tag.

Ll od =

e r

14.12 Passing Parameters to Applets

We can supply user-defined parameters to an applet using <PARAM...> tags. Each <PARAM...> tag
has a name attribute such as celor, and a value attribute such as red. Inside the applet code, the applet
can refer to that parameter by name to find its value. For example, we can change the colour of the text
displayed to red by an applet by using a <PARAM. > tag as follows:

<APPLET=»
<PARAM = color VALUE = “red™>
</ APPLET=

Similarly, we can change the text to be displayed by an applet by supplying new text to the applet
through a <PARAM...> tag as shown below:

<PARAM NAME = text WALUE = "I love Java ™=

Passing parameters to an applet code using <PARAM> tag is something similar to passing
parameters to the main() method using command line arguments. To set up and handle parameters, we
need to do two things:

1. Include appropriate <PARAM.. > tags in the HTML document.

2. Provide Code in the applet to parse these parameters.

Parameters are passed on an applet when it is loaded. We can define the init{) method in the applet
to get hold of the parameters defined in the <PARAM:> tags. This is done using the getParameter()
method, which takes one string argument representing the name of the parameter and returns a string
containing the value of that parameter.

Hidden page

w Applel Viewsr: Hellod avalP sram class
Appiet

Hello Applet!

appletloader sianled

Now, remove the <PARAM:=> tag from the HTML file and then run the applet again. The result will
be as shown in Fig. 14.9.

E!a’-‘u.pnf-ﬂ Viewer Hellod aval amam class
Apgler T T S)

Hello Java

appletioader started

'Fig. 149 Output without PARAM tag

% 14.13 Aligning the Display

We can align the output of the applet using the ALIGN attribute. This attribute can have one of the nine
values:

LEFT, RIGHT, TOP, TEXT TOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM, ABSBOTTOM.

For example, ALGN = LEFT will display the output at the left margin of the page. All text that
follows the ALIGN in the Web page will be placed to the right of the display. Program 14.4 shows a
HTML file for our HelloJava applet shown in Program 14.1.

Program 14.4 HTML file with ALIGN attribute

<HTML=
<HEAD=
<TILTE> Here is an applet </TITLE=
</HEAD>
<BODY=>
<APPLET CODE = HelloJava.class
WIDTH = 400
HEIGHT = Z00
ALIGN = RIGHT =
</APPLET=>
</BODY>
</HTML=>

The alignment of applet will be seen and appreciated only when we run the applet using a Java-
capable browser. Figure 14.10 shows how an applet and text surrounding it might appear in a Java-
capable browser. All the text following the applet appears to the left of that applet.

L applet

Hello Java

L = text

m

14.14 More About HTML Tags

We have seen and used a few HTML tags. HTML supports a large number of tags that can be used to

control the style and format of the display of Web pages. Table 14.2 lists important HTML tags and
their functions,

Tag Function

<HTML= </HTHL> Signifies the beginning and end of a HTML fille.

<HEAD= ... < /HEAD> This tag may include details about the Web page. Usually contains
<TITLE> tag within it.

<TITLE= </TITLE= The text contained in it will appear in the title bar of the browser.

<B0DY= </BODY= This tag contains the main text of the Web page. It is the place where
the <APPLET> tag is declared.

<Hl> ... </Hl> Header tags. Used to display headings, <H1> ereates the largest font
header, while <H6> creates the smallest one.

<HB= <H/6>

<CENTER= ... <CENTER=> Places the text contained in it at the centre of the page.

<APPLET ... > <APPLET ..> tag declares the applet details as its attributes,

<APPLET= ... </APPLET) May hold optionally user-defined parameters using <PARAM> Tags.

<PARAM= Supplies user-defined parameters. The <PARAM> tag needs to be
placed between the <APPLET=> and </APPLET> tags. We can use as
many different <PARAM> tags as we wish for each applet.

<f= <B= Text between these tags will be displaved in bold type.

<BR=> Line break tag. This will skip a line. Does not have an end tag.

<= Para tag. This tag moves us to the next line and starts a paragraph of
text. No end lag is necessary.

 This tag declares attributes of an image to be displayed.

<HR= Dvaws a horizontal rule.

<A> <k Anchor tag used to add hyperlinks.

<FONT We can change the colour and size of the text that lies in between

 and tags using COLOR and SIZE attributes in
the tag <FONT .=

<!» Any text starting with a <! mark and ending with a > mark is ignored
by the Web browser. We may add comments here. A comment tag
may be placed amywhere in a Web page.

i

=" 14.15 Displaying Numerical Values

It applets, we can display numerical values by first converting them into strings and then using the
drawString() method of Graphics class. We can do this easily by calling the ValueOf() method of
String class. Program 14.5 illustrates how an applet handles numerical values.

A, T s

Program 14.5 Displaying numerical values

import java.awt ™*:
import java.applet. *;
public class MNumValues extends Applet

{
public void paint (Graphics g)
{
int valuel = 10;
int value2 = 20.
int sum = wvaluel + walue?:
String s = “sum: T o+ String.valueQ0f(sum):
g.drawstringis. 100. 100):
}
}
The applet Program 14.5 when run using the following HTML file displays the output as shown in
Fig. 14.11.
<html>=
<applet
code = MNumValues.class
width = 300
height = 300 =
<fapplet>
</html=

Applet Wiewer: Mumvalues.class

Applet

appletloader.started

Fig. 14.11 Output of Program 14,5

Copyrighted maierial

14.16 Getting Input from the User

Applets work in a graphical environment. Therefore, applets treat inputs as text strings. We must first
create an area of the screen in which user can type and edit input items (which may be any data type).
We can do this by using the TexiField class of the applet package. Once text fields are created for
receiving input, we can type the values in the fields and edit them, if necessary.

Mext step is to retrieve the items from the fields for display of calculations, if any, Remember, the
text fields contain items in string form. They need to be converted to the right form, before they are
used in any computations. The results are then converted back to strings for display. Program 14.6
demonstrates how these steps are implemented.

Program 14.6 Interactive input to an applet

import java.awt.*; -
import java.applet.¥*;

public class UserIn extends Applet

{
TextField textl., text2:

public wvoid init{)

{

textl = new TextField{(B):
text? = new TextField(B):
add (textl):
add (text?):
textl.setText
text?.setText
}
?ub11c void paint (Graphics g)
int x=0, y=0. z=0;
String sl. s2. s:
g.drawString(“Input & number in each box =, 10. 50);
try
{
sl = textl.getText{ };
x = Integer.parselntisl):
52 = text2.getText():
¥y = Integer.parselnt(s2);

catch (Exception ex) {]}

Z = X + y:

s = String.valuedf (z);

g.drawString ("THE SUM [S: ~. 10. 75):
g.drawstring (s, 100, 7%):

{ Contimued)

264
Program 14.6 (Conrinued)

public Boolean action (Event event. Object object)

{

repaint ():
return true;

Run the applet Userln using the following steps:
1. Type and save the program (java file)

2. Compile the applet {.class file)
3. Write a HTML document (.html file)

<htm] =
<applet
code = Userln.class
width = 300
height = 200 =
<fapplet>
<fhtml>

4, Use the appletviewer to display the results

When the applet is up and running, enter a number into each text field box displayed in the applet
arca, and then press the Return Key. Now, the applet computes the sum of these two numbers and
displays the result as shown in Fig. 14.12.

.ﬁ.l:plﬂ'l Viewer: lzerdn class
Applel '

23 1215

Inpul & numbed in each box
THE SUM IS5 - 338

appletioader. staried

"Figi1442 Interactive computing with applets

Copyrighted material

‘Applet Programming 265
Program Analysis

The applet declares two TextField objects at the beginning.
TextField textl, text?:

These two objects represent text boxes where we type the numbers to be added.
Next, we override the init{) method to do the following:

1. To create two text field objects to hold strings (of eight character length).

2. To add the objects to the applet’s display area.

3. To initialize the contents of the objects to zero.

Then comes the paint() method where all the actions take place. First, three integer variables are
declared, followed by three siring variables. Remember, the numbers entered in the text boxes are in
string form and therefore they are retrieved as strings using the getText() method and then they are
converted to numerical values using the parselnt() method of the Integer class.

After retrieving and converting both the strings to integer numbers, the paint{) method sums them
up and stores the result in the variable z. We must convert the numerical value in z to a string before we
attemnpt to display the answer. This is done using the ValueOf{) method of the String class.

M

14.17 Summary

Applets are Java programs developed for use on the Intemmet. They provide a means to distnibute
interesting, dynamic, and interactive applications over the World Wide Web. We have leamed the
following about applets in this chapter:

How do applets differ from applications,

How to design applets,

How to design a Web page using HTML tags,

How to execute applets, and

How to provide interactive input to applets.

“ Key Terms
Applet, Local applet, Remote applet, Web page, HTML tag, APPLET tag, Applet life cycle.

Revew Quesrions |
e e ——

14.1 'What is an applet?

14.2 What is a local applet?

143 What is a remote applet?

144 Explain the client/server relationship as applied to Java applets.

14.5 How do applets differ from application programs?

14.6 Discuss the steps involved in developing and running a local applet.
14.7 Discuss the steps involved in loading and running a remote applet.

148 Describe the various sections of Web page.

149 How many arguments can be passed to an applet using <PARAM> tags?

14.10 Why do applet classes need to be declared as public?

14.11 Describe the different stages in the life cycle of an applet. Distinguish between imit{) and
start{) methods.

14.12 Develop an applet that receives three numeric values as input from the user and then displays the largest of
the three on the screen. Write a HTML page and test the applet.

DeBucing EXERCISES

14.1 Find errors in the following code for drawing set of nested Rectangles.

impartjava. awt . *:

import java.applet. Applet;
public class Rectangles extends Applet

public void paint(Graphics g)
{

int inset:

int rectWidth, rectHeight:

g.SetColar(Color.blue):
g.f111Rect(0,0,300,160):

inset = 0:
rectWidth = 299;
rectHeight= 159:
g.setColor{Color.red);
g.drawStr("Rectangles™.150,200):
while (rectWidth> = 0 &% rectHeight> = ()
{
g.drawRect(inset, inset, rectWidth., rectHeight)
inset += 15:
rectWidth -= 30;
}I rectHeight -= 30

}
}

14,2 The following code converts temperature values. Will the code display the new value on moving the
scrollbar?

import java.awt.*:
import java.applet.Applet;
import java.awt . event *:
public class CelsiusValue extends Applet implements Adjustmentlistener
{
private Scrollbar bar.
private int old. newtemp = 0:
private inft fahr = 32;
public void init{)
\

Copyrighted material

Hidden page

i i H i
z“ =
i

private void pause{int howlLong)

{
for (int count = 0: count < howlong: count++);

]
public void mouseClicked(MouseEvent e)

Bo= g getk():
y = e.gety():
repaint():
}
public void mouseExited(MouseEvent e} {)
public void mouseEntered(MouseEvent a) { }
public void mousePressed({MouseEvent e) { }
public void mouseReleased(MouseEvent e) { }
1
14.4 Using parameter, an applet provides answers to different questions. Correct the code.
Question. htmi

<hitml=
<head>
<title=(uestions and Answers</title=
</hnead>
<body=
<APPLET COOE-Question.class
WIDTH=400 HEIGHT = 100>
<PARAM NAME=gquestion VALUE="What is Inheritance?"=
<PARAM NAME=answer VALUE="Getting the properties of one class into another™=
</APPLET=>
=/hody=>
</html=>
Question, java
import java.awt.*:
impaort java.awt.event.™®:
import java.applet.Applet:
public class Question extends Applet implements Actionlistener
{
String theduestion:
String theAnswer = ° 7
Button reveal = new Button("Click to know the answer”):
public void init()
{
theQuestion = getParameter(ques”):
add(reveal);
reveal .addActionListener{this);

public void paint(Graphics g)

Copyrighted material

g.setColor(Color.black):
g.drawString{ theQuestion, 10, 50}
g.setColor{Color.red): .
g.drawstring(theAnswer, 10, 70):

public void actionPerformed(ActionEvent e)
{
thefnswer = getParameter(answer”):
repaint();
}
}

14.5 Given applet shows the sequence of events called in an applet. Will the message defined in destroy() event

be shown?
import java.awt.*:

importjava.applet Applet:
public classAllMethodsApplet extends Applet

{
TextrArea messages = new TextArea(B8, 30):

public AllMethodsApplet()
{

messages . append{ "Constructor called/n™):
public vaid init()

addi messages):
messages.append (“Init called/n™).

}
public woid start()

{
messages.append(“Start calld/n™):

public void stop()

{
messages.append (“Stop called/n™)

}
public void destory()
{

messages . append (“Destroy called/n”)

]
public void paint{ Graphics dignlay)
{
messages . append{ “Paint called/n”);
Dimension size = getSize();

}
}

display.drawRect(0. 0. size.widtrh-1. size.height-1):

Copyrighted material

Graphics
Programming

% 15.1 Introduction

One of the most important features of Java 1s its ability to draw graphics. We can write Java applets that
draw lines, figures of different shapes, images, and text in different fonts and styles. We can also
incorporate different colours in display,

Every applet has its own area of the screen known as canvas, where it creates its display. The size of
an applet’s space is decided by the attributes of the <APPLET...> tag. A Java applet draws graphical
image inside its space using the coordinate system as shown in Fig. 15.1.

Java's coordinate system has the ongin (0, 0) mn the upper-left comer. Positive x values are to the
right, and positive y values are to the bottom. The values of coordinates x and y are in pixels.

g 15.2 The Graphics Class

Java's Graphies class includes methods for drawing many different types of shapes, from simple lines
to polygons to text in a variety of fonts. We have already seen how to display text using the
point{ } method and a Graphies object.

To draw a shape on the screen, we may call one of the methods available in the Graphics class.
Table 15.1 shows the most commonly used drawing methods in the Graphics class. All the drawing
methods have arguments representing end points, corners, or starting locations of a shape as values in
the applet’s coordinate system. To draw a shape, we only need to use the appropriate method with the
required arguments.

2M

(0,0 - (80,00
| I ,
| |
I
H20.,20H
n
|
¥
{60,604
| !
} ‘
1 1
{0,800 {BO_BO)

" FigH18:1 Coordinate system of Java

T i S L PR Lty L ToY L s e e s RS
@}‘.1—_‘2 “?‘ - Table 15.1 MHM#HI-*“ EE e
Method Description
clearfect {) Erases a rectangular area of the canvas.
copyArea () Copies a rectangular area of the canvas to another area.
drawArc () Draws a hollow arc.
drawLine (3 Draws a straight line,
drawlval () Draws a hollow oval.
drawPolygon () Draws a hollow polygon,
drawRect () Draws a hollow rectangle.
drawRoundRect () Draws a hollow rectangle with rounded comers.
drawString () Displays a text string.
fillAre () Draws a filled arc.
fillOval (} Draws a filled oval.
fillPolygon () Draws a filled polygon.

(Continued)

Copyrighted material

Table 15.1 (Continued)

Method Description -
fillRect () Diraws a filled rectangle.

f1l11RoundRect () Drraws a filled rectangle with rounded comners.

getColor § } Retrieves the current drawing colour.

getfant {) Retrieves the currently used font.

getFontMetrics {) Retrieves information about the current font.

setColor () Sets the drawing colour.

setFont () Sets the font,

FL =
‘g 15.3 Lines and Rectangles

The simplest shape we can draw with the Graphics class is a line. The drawLine {) method takes two
pair of coordinates, (x1, y1) and (x2, ¥2) as arguments and draws a line between them. For example,
the following statement draws a straight line from the coordinate point (10,10} to (50, 50):

g.drawLine (10,10. 50.50)

The g is the Graphies object passed to paint() method.

Similarly, we can draw a rectangle using the drawRect{) method. This method takes four
arguments. The first two represent the x and y coordinates of the top left comner of the rectangle, and
the remaining two represent the widih and the height of the rectangle. For example, the statement will
draw a rectangle starting at {10,60) having a width of 40 pixels and a height of 30 pixels. Remember
that the drawReet {) method draws only the outline of a box.

g.drawRect (10, 60, -ﬂrﬂ. 300 ;
| L
width height
(z, ¥l
Rectangle

We can draw a solid box by using the method fillReet (). This also takes four parameters (as
drawRect) corresponding to the starting point, the width and the height of the rectangle. For example,
the staternent

g.fillRect (60, 10, 30. BO)

will draw a solid rectangle starting at {(60,10) with a width of 30 pixels and a height of 80 pixels.

We can also draw rounded rectangles (which are rectangles with rounded edges), using the methods
drawRoundRect () and fillRoundRect(). These two methods are similar to drawRect() and fillRect
() except that they take two extra arguments representing the width and height of the angle of corers,
These extra parameters indicate how much of comers will be rounded. Example:

g.drawRoundRect (10, 100. B0, 50, 10. 10}
g.fillRoundRect (20. 110. &0. 30. 5. 5)

Copyrighted maierial

Program 15.1 is an applet code that draws three lines, a rectangle, a filled rectangle, a rounded
rectangle and a filled rounded rectangle. Note that the filled rounded one is drawn inside the rounded
rectangle. Program 15.2 shows a HTML file that displays the applet. The output of the applet.
LineRect under appletviewer is shown in Fig. 15.2.

Program 15.1 Drawing lines and rectangles

import java.awt.*:
import java.applet.*;
public class LineRect extends Applet
{
public void paint (Graphics gl
E
g.drawLine (10. 10, 50. 50) .
g.drawRect (10. 60, 40, 30) ;
g.fillRect (60, 10, 30, BO)
g.drawRoundRect (10, 100, 80, 50. 10, 10} ;
g.fillRoundRect (20, 110, &0, 30. 5. 5] :
g.drawLine (100, 10, 230, 140) ;
g.drawLine (100, 140, 230, 10) ;
}

}
<APPLET
CODE = LineRect .class
WIDTH = 250
HEIGHT = Z00=
</APPLET>

O] x|

.l. . B
_.-"# >,

appletioader stated

{FIgi182° Output of LineRect applet

274

@ 15.4 Circles and Ellipses

The Graphics class does not have any method for circles or ellipses. However, the drawOwval()
method can be used to draw a circle or an ellipse. Ovals are just like rectangles with overly rounded
corners as shown in Fig. 15.3. Note that the figure is surrounded by a rectangle that just touches the
edges. The drawOval() method takes four arguments: the first two represent the top left comer of the
imaginary rectangle and the other two represent the width and height of the oval itself. Note that if the
width and height are the same, the oval becomes a circle. The oval’s coordinates are actually the

coordinates of an enclosing rectangle.

“PGEASHT Oval witinon imaginary ectangle

Like rectangle methods, the drawOwval{) method draws outline of an oval, and the fillOval{) method
draws a sohd oval. The code segment shown below draws a filled circle within an oval (see Fig. 15.4).

public woid paint {ﬁraph1c5 Q)

{

g.drawOval (20, 20. 200, 120) :

g.setColor (Color.green):

g.fi110val (70, 30, 100, 100) : /F This is a3 circle.
1

o

ﬁ.[ll,ﬂr' Wiewead [Ival claic

M=l 3
e G~

[t

afpletiomdeg. ol artisd

Fig.15.4 A filled circle within an ellipse

L-opyrighted materal

275

We can draw an object using a color object as follows:
g.setColor (Color.green) :
After setting the color, all drawing operations will occur in that color.

@ 15.5 Drawing Arcs

An arc is a part of an oval, In fact, we can think of an oval as a series of arcs that are connected together
in an orderly manner. The drawAre() designed to draw arcs takes six arguments. The first four are the
same as the arguments for drawOval() method and the last two represent the starting angle of the arc
and the number of degrees (sweep angle) around the arc.

In drawing arcs, Java actually formulates the arc as an oval and then draws only a part of it as
dictated by the last two arguments. Java considers the three O'clock position as zero degree position
and degrees increase in anti-clockwise direction as shown in Fig. 15.5. So, to draw an arc from 12:00
¥clock position to 6:00 O'clock position, the starting angle would be 90, and the sweep angle would
be 180.

mi

180"

amr

Fig. 155" ' .., Arc as a part of an oval

We can also draw an arc in backward direction by specifying the sweep angle as negative. For
example, if the last argument is —135° and the starting angle is 45°, then the arc is drawn as shown in
Fig. 15.6.

nl'

Fig. 158 Drawing an arc in clockwise direction

Copyrighted material

L o iy

We can use the fillAre() method to fill the arc. Filled arcs are drawn as if they were sections of a pie.
Instead of joining the two end points, they are joined to the centre of the oval. Program 15.3 shows an
applet that draws a human face as shown in Fig. 15.7.

Program 15.3 Applet for drawing a human face

import java.awt.*;
import java.applet.™:
public class Face extends Applet

{
public void paint (Graphics g)
{
g.drawOval (40, 40. 120. 1500 : { / Head
g.drawlval (57, 75, 30, 200 : !/ Lefteye
g.drawOval (110, 75, 30. 200 { [Right eye
g.fill0val (6B. B1, 10, 10} ; !/ Pupil (left)
g.fi110val (121, 81, 10. 10) ; /1 Pupil (right)
g.drawOval (85. 100, 30. 30) : { | MNose
g.fillArc (60, 125, 80, 40_ 180, 180) . {/ Mouth
g.drawlval (25, 92, 15, 30) : {/ Left ear
g.drawlval (160, 92, 15. 30} : /' / Right ear
}
)

f“' Output of the Face applet

Copyrighted material

g 15.6 Drawing Polygons

Polygons are shapes with many zides. A polygon may be considered a set of lines connected together.
The end of the first line is the beginning of the second line, the end of the second is the beginning of the
third, and so on. This suggests that we can draw a polygon with n sides using the drawLine() method
n times in succession. For example, the code given below will draw a polygon of three sides. The
output of this code 15 shown in Fig. 15.8.

public void paint (Graphics gl

g.drawLine (10, 20, 170, 40) .
g.drawLine (170. 40, 80. 140) .
g.drawLine (80, 140, 10, 20)

J
Mote that the end point of the third line is the same as the starting point of the polygon.

(10, 20}

{170, 40)

(80, 140)

w* A polygon with three sides

We can draw polygons more conveniently using the drawPolygon() method of Graphics class,
This method takes three arguments:
*= An array of integers containing x coordinates
* An array of integers containing y coordinates
* An integer for the total number of points
It is obvious that x and y arrays should be of the same size and we must repeat the first point at the
end of the array for closing the polygon. The polygon shown in Fig. 15.8 can be drawn using the
drawPolygon({) method as follows:

public void paint (Graphics g)
{
int xPoints [] = {10. 170. 80. 10}:
int yPoints [1 = {20. 40. 140. 20}.
int nPoints [] = xPoints. length:
g.drawPolygon (xPoints, yPoints. nPoints) :

L Programming whh Jeve: A Frims;
We can also draw a filled polygon by using the fillPolygon() method. Program 15.4 illustrates the

use of polygon methods to draw both the empty polygons and the filled polygons. Its output is shown
in Fig. 15.9.

Program 15.4 Drawing polygons

import java.awt.*®;

import java.applet.®:

public class Poly extends Applet

{
int x1 [J={20. 120, 220, 20}:
int y1 [] ={20. 120, 20. 20}:
int nl = &;
int x2 [] = {120, 220, 220. 120}:
int y2 [1= {120, 20, 220, 120};
int ng = 4;
public void paint (Graphics g}

g.drawPolygon (x1, yl, nl) :
g.fillPolygon (x2, y2.n2) ;

E:-:uﬂ.nnlﬂ Weswiisi Poaly. clats

—

appletioader. started

WFig188r Output of Program 15.4

Another way of calling the methods drawPolygon() and fillPolygon() is to use a Polygon object.
The Polygon class enables us to treat the polygon as an object rather than having to deal with individual
arrays. This approach involves the following steps:

Copyrighted material

) _-.. by —
Defining x coordinate values as an array

Defining y coordinate values as an array

Defining the number of points n

Creating a Polygon object and initializing it with the above x, v and n values,

. Calling the method drawPolygon() or fillPolygon() with the polygon object as arguments
T‘ht following code illustrates these steps:

LR e

public void paint (Graphics g)

{
int x [] = {20, 120, 220. 20}
int y [1={20, 120, 20, 20};
int n = x length:
Palygon poly = new Paolygon (%, ¥, n) :
g.drawPolygon (poly) :
}

The Polygon class is useful if we want to add poinis to the polygon. For example, if we have a
polygon object existing, then we can add a point to it as follows:
poly.addPoint (x, ¥)

The above code may be rewritten using the addPoint{) method as follows:

public void paint (Graphics g)

{
Polygon poly = new Polygon () ;
poly. addPoint (20, 200 ;
poly .addPoint (120, 120) ;
poly.addPoint (220, 200 ;
poly. addPoint (20. 200 :
d.drawPolygon (poly} :

}

Here, we first create an empty polygon and then add points to it one after another. Finally, we call
the drawPolygon() method using the poly object as an argument to complete the process of drawing
the polygon.

el

15.7 Line Graphs

We can design applets to draw line graphs to illustrate graphically the relationship between two
variables. Consider the table of values shown as follows:

X 0 60 120 | 180 | 240 | 300 | 360 400
¥ 0 120 | 180 | 260 | 340 | 340 | 300(180

Hidden page

Hidden page

282 - Programiing with Java: A Primer
Program 15.6 Using control loops in applets

import java.awt.*:

import java.applet.*;

public class Controlloop extends Applet
{

public void paint (Graphics g)

{
for (int i=0: f<=4: j++)
if(1%2) == D)
g.drawOval (120, 1*60+10.
else
g.fi110val (120, 1*&0+10, 50,
}
}

}

50, 50)

501

g 159 Drawing Bar Charts

Applets can be designed to display bar charts, which are commonly used in comparative analysis of
data. The table below shows the annual tummover of a company during the period 1991 to 1994, These
values may be placed in a HTML file as PARAM attributes and then used in an applet for displaying a

bar chart.
Year 1991 1992 1993 1994
Tumover 110 150 100 170
(Rs. Crores) ;

Program 15.7 shows an applet that receives the data values from the HTML page shown in Program
15.8 and displays an appropriate bar chart. The method getParameter() is used to fetch the data
values from the HTML file. Note that the method getParameter() retums only strning values and
therefore we use the wrapper class method parselnt{) to convert sirings to integer values. Figure

15.12 shows the result of Program 15.7.

Program 15.7 An applet for drawing bar charts

import java.awt.™;
import java.applet.*:
public class BarChart extends Applet
{
int n = 0;
String label []
int value []

(Continuwed)

Copyrighted material

Program 15.7 (Conrinued)

public void init ()
{

try

{
n = Integer.parselnt (getParameter ("columns”™))
label = new String [n]
value = new int [n]

label [0] = getParameter {(~labell”™)

label [1] = getParameter (" label2™)

label [2] = getParameter ("labeld”)

label [3] = getParameter (" labeld™)

value [0] = Integer.parselnt {getParameter ("cl”))
value [1] = Integer.parselnt {(getParameter (“c2”))
value [2] = Integer.parselnt {(getParameter ("c37))
value [3] = Integer.parselnt (getParameter ("cd4”))

}
catch (NumberFormatException e} { }

}
public wvoid paint (Graphics g)

{
for (int 1 = 0: 9 <= n: i++)
{
g.setColor (Color.red) .
g.drawString (label [1]. 20.1*50+30) -
g.fillRect (50, i*50+10, wvalue [1]. 40}
}
}
}
Program 15.8 HTML file for running the BarChart applet
=HTHL =
<APPLET
CODE = BarChart.class
WIOTH = 300

HEIGHT = 250>
<PARAM NAME = “columns™ VALUE = “4°=

<PARAM NAME = "1™ VALUE = "110°=
<PARAM NAME = “c2” VALUE = "1507=
<PARAM NAME = “c3° VALUE = “1007=
<PARAM NAME = “cd4” VALUE = "1707=
<PARAM NAME = “labell™ VALUE = “91°=

(Continued)

Copyrighted maierial

Hidden page

Hidden page

286 Programming with
15.2 The following code draws a line. Will the code work? If not, why?

import java.awt.*:

import java.applet.*;

class line extends Applet

{

public void paint{Graphics gl

{

}
}
153 The program given below should create a square using drawLine() method. Does the code show the
desired output?
import java.awt,™:
import java.applet.*;
?ublit class lineSquare extends Applet

g.drawline(10.10.100.100.45):

public wvoid paint(Graphics g)

g.drawline(10,10.10,200});
g.drawLine{10,10,200,10);
g.drawLine{10.200.200.200):
g.drawLine(200,10,200,200):

15.4 An oval, line and rectangle are being created using this code. Comrect the code.
import java.awt.*:

import java.applet.*:
class roundrect extends Applet

public wvoid paint{Graphics g}

g.drawlval(20.20.120.120):
g.drawLine(10,10,100.100%;
g.drawRect(10.10,100.100.10.50):

}
}
15.5 The following code is designed to draw a rectangle with pink color. What is wrong with the code?
import jJava.awt.*:

import java.applet.*:
public class colorrect extends Applet

{

?ub]ic void paint{Graphics g)
Calor c=g.getColor(}):
g.setColor{pink):
g.drawOval(20.20,100.100);
g.setColoric):
g.fillRect(120,120.50.50):

}

]

Copyrighted material

Managing Input/
Output Files in Java

g 16.1 Introduction

So far we have used variables and arrays for storing data inside the programs. This approach poses the
following problems.

1. The data is lost either when a variable goes out of scope or when the program is terminated. That
15, the storage is temporary.
2. Itis difficult to handle large volumes of data using variables and arrays.

We can overcome these problems by stoning data on secondary siorage devices such as floppy disks
or hard disks. The data is stored in these devices using the concept of files. Data stored in files is often
called persistent data.

A file is a collection of related records placed in a particular area on the disk. A record is composed
of several fields and a field is a group of characters as illustrated in Fig. 16.1. Characters in Java are
Unicode characters composed of two bytes, each byte containing eight binary digits, 1 or 0.

Storing and managing data using files is known as file processing which includes tasks such as
creating files, updating files and manipulation of data. Java supports many powerful features for
managing input and output of data using files, Reading and writing of data in a file can be done at the
level of bytes or characters or fields depending on the requirements of a particular application. Java
also provides capabilities to read and write class objects directly. Note that a record may be represented
as a class object in Java. The process of reading and wnting objects is called object serialization. In
this chapter, we discuss various features supported by Java for file processing.

208 * Pogramming it e A P
Byte Byt

A A
£ Ty

lofojofofojoJofojfof1fojof1]of u|-|

1 Unicode character
lafo[n]n Field (4 characters)

%__ 1001 | 7050 | Record (3 fields)

| John | 1001 [7050 | File {4 records)

)

| Lata | 1002 | 57.50 |

| Mani | 1003 | 75.00 |

| Viay | 1004 | 8250 |

Marks fiebd

Fooll nurmber feld
Marme fiahd

Fig:16.1 ' Data representation in Java files

% 16.2 Concept of Streams

In file processing, input refers to the flow of data into a program and output means the flow of data out
of a program. Input to a program may come from the keyboard, the mouse, the memory, the disk, a
network, or another program. Similarly, output from a program may go to the screen, the printer,
the memory, the disk, a network, or another program. This is illustrated in Fig. 16.2. Although these
Sources Destinations

SRS

Keyboard |

— e

=

_——

[Memary |}—— . [Momory]
| Disk | 1 Disk

m Relationship of Java program with /O devices

Managing npulOutut Fies n Jova 289
devices look very different at the hardware level, they share certain common characteristics such as
unidirectional movement of data, treating data as a sequence of bytes or characters and support to the
sequential access to the data.

Java uses the concept of streams to represent the ordered sequence of data, a common charactenstic
shared by all the input/output devices as stated above. A stream presents a uniform, easy-to-use, object-
oriented interface between the program and the input/output devices.

A stream in Java is a path along which data flows (like a nver or a pipe along which water flows). It
has a source (of data) and a destinarion (for that data) as depicted in Fig. 16.3. Both the source and the
destination may be physical devices or programs or other streams in the same program.

Source
b cmmmmemmemommommeeoooaes Walve connecting the
LI g e S0UTCE and the stea
Shream

m Conceptual view of a stream

The concept of sending data from one stream to another (like one pipe feeding into another pipe) has
made streams in Java a powerful tool for file processing. We can build a complex file processing
sequence using a series of simple stream operations. This feature can be used to filter data along the
pipeline of streams so that we obtain data in a desired format. For example, we can use one stream to
get raw data in binary format and then use another stream in series to convert it to integers.

‘ I Siream
Sourca —— i | Program

{a) Reading data it a program

Cutpat straam
@ il SO e Destination ‘

(b)) Writimg diata to a destination

W'r Using input and output streams

290 Programming with Java: A Primer

Java streams are classified into two basic types, namely, inpuf stream and output stream, An input
stream extracts (i.e. reads) data from the source (file) and sends it to the program. Similarly, an output
stream takes data from the program and sends (1.e. writes) it to the destination (file). Figure 16.4
illustrates the use of input and output streams. The program connects and opens an input stream on the
data source and then reads the data senally. Similarly, the program connects and opens an output
stream to the destination place of data and writes data out serially. In both the cases, the program does
not know the details of end points (i.e. source and destination).

@ 16.3 Stream Classes

The java.io package contains a large number of stream classes that provide capabilities for processing
all types of data. These classes may be categorized into two groups based on the data type on which
they operate.

1. Byte stream classes that provide support for handling 1'O operations on bytes.

2. Character stream classes that provide support for managing IO operations on characters.

These two groups may further be classified based on their purpose. Figure 16.5 shows how stream
classes are grouped based on their functions. Byte stream and character stream classes contain
specialized classes to deal with input and output operations independently on vanous types of devices.
We can also cross-group the streams based on the type of source or destination they read from or write
to. The source (or destination) may be memory, a file or a pipe.

Java

Classification of Java stream classes

Copyrighted material

 Manoging inputOutout Flew i Jave ol

@ 16.4 Byte Stream Classes

Byte stream classes have been designed to provide functional features for creating and manipulating
streams and files for reading and writing bytes. Since the streams are unidirectional, they can transmit
bytes in only one direction and, therefore, Java provides two kinds of byte stream classes: fnput stream
classes and ouipur stream classes.

Input Stream Classes

Input stream classes that are used to read 2-bit bytes include a super class known as InputStream and
a number of subclasses for supporting vanous input-related functions. Figure 16.6 shows the class
hierarchy of input stream classes,

JE— / \ Al
{___Plpernpulstream__:}l.'

| ¢ ObjectinputStream >

! 1

¢ ByleAmrayinputStream e -SL_ﬂngEum:rlnuutSlm;r_r-_
— = -

R

<’ >

e

o~ g
___.'—'—'_'___ o ____"‘--\. | L o
¢ BufferedinputSteam | «__PushbackinputStream

— B

Copyrighted material

The super class InputStream is an abstract class, and, therefore, we cannot create instances of this
class. Rather, we must use the subclasses that inherit from this class. The InputStream class defines
methods for performing input functions such as
Reading bytes
Closing streams
Marking positions in streams
Skipping ahead 1n a stream
Finding the number of bytes in a stream
Table 16.1 gives a brief description of all the methods provided by the InputStream class.

240 B A £
o' 5ol A

Method Description

1. read() Reads a byie from the inpul stream

2. read (byte b{]) Reads an amray of bytes into b

3. read (byie b], int m, int m) Reads m bytes into b starting from nth byte.
4. available{) Gives number of bytes available in the input
5. skipin) Skips over n bytes from the inpuf stream

6. reset() Goes back to the beginning of the stream

7. close{) Closes the input stream

Mote that the class DatalnputStream extends FilterInputStream and implements the interface
Datalnput. Therefore, the DatalnputStream class implements the methods described in Datalnput
in addition to using the methods of InputStream class. The Datalnput interface contains the
following methods:

———— e ==

& readShort() s readDouble|)

s readlnt) o readLine()

s readLongl) o readChar()

o readFloat() o readBollean()
o readUUTF()

Output Stream Classes

Output stream classes are derived from the base class OutputStream as shown in Fig. 16.7. Like
InputStream, the OutputStream is an abstract class and therefore we cannot instantiate it. The several

subclasses of the QutputStream can be used for performing the output operations.
The OutputStream includes methods that are designed to perform the following tasks:
* Writing bytes
* Closing streams
* Flushing streams

Copyrighted material

 Managing input/Output Files in Java 293
7N
(o)
R_lJ

FllaOwrtpatSiream

Q:Tuﬁ:ad@

\[Dhja_ctﬂuq:-ut@

i W

@Mrayﬂumulstrfﬂ“}

{i_ﬁhhaﬂhﬂumuﬁv:aﬁﬁ__::}

DataChutpud Skneam

‘7._ Hierarchy of output stream classes

Table 16.2 gives a brief description of all the methods defined by the OutputStream class.

Method Description
1. write{) Writes a byte to the output stream
2. write{byte[] b) Wirites all bytes in the array b to the output stream
3. write(byte b], int n, int m) Writes m bytes from array b starting from nth byte
4, close{) Closes the output stream
5. flushi) Flushes the output stream

Copyrighted material

Hidden page

Managing Input/Output Files in Java 295
Writer Stream Classes

Like output stream classes, the writer stream classes are designed to perform all output operations on
files. Only difference is that while output stream classes are designed to write bytes, the writer stream
classes are designed to write characters.

The Writer class is an abstract class which acts as a base class for all the other writer stream classes

as shown in Fig. 16.9. This base class provides support for all output operations by defining methods
that are identical to those in OutputStream class (see Table 16.2).

= 16.6 Using Streams

We have seen bniefly vanous types of input and output stream classes used for handling both the 16-bat
characters and 8-bit bytes. Although all the classes are known as i/o classes, not all of them are used for
reading and writing operations only. Some perform operations such as buffering, filtering, data
conversion, counting and concatenation while carrying out o tasks.

([BuferecWriter | (Printwriter)
(CharAmayWriter) (StingWriter)
(" FitertWritar) (PipeWriter)

Fig. 16.9 Higrarchy of writer stream classes

Hidden page

“Weanagii input'Oueput Fledi i dove: 7

|J-.-'-- -\-h\.'.
:_ Object |
M B oy
_Interface ivariace
[Datalnpet | I DataOutput]I
", v
“&H ,-*"Hf
""\H | f_.-’j
.t o
| RandomAccessFile

fm Implementation of the RandomAccessFile

The class Stream Tokenizer, a subclass of object can be used for breaking up a stream of text from
an input text file into meaningful pieces called rokens. The behaviour of the StreamTokenizer class is
similar to that of the StringTokenizer class (of java.util package) that breaks a stning into its
component tokens.

g 16.8 Using the File Class

The java.io package includes a class known as the File class that provides support for creating files
and directories. The class includes several constructors for instantiating the File objects. This class
also contains several methods for supporting the operations such as

Creating a file

Opening a file

Closing a file

Deleting a file

Gietting the name of a file

Getting the size of a file

Checking the existence of a file

Renaming a file

Checking whether the file is writable

Checking whether the file is readable

@ @ & & @ & @ @ @ @

|1

16.9 Input/Output Exceptions

When creating files and performing i/o operations on them, the system may generate i'o related
exceptions. The basic Vo related exception classes and their functions are given in Table 16.4.

170 Exception class Function

EOFException Signals that an end of the file or end of stream has been reached
" unexpectedly during imput

FileNotFoundException Informs that a file could not be found

InterruptediOException Wamns that an 'O operations has been interrupted

[OException Signals that an 1'0 exception of some sort has occurred

Each 1/o statement or group of o statements must have an exception handler around it as shown
below or the method must declare that it throws an [OException.

.......... D 1D statemmenls

catch (IOException e}

......... . {1 Message output statement

— e — = — = — —

Proper use of exception handlers would help us identify and locate i'o errors more effectively.

% 16.10 Creation of Files

If we want to create and use a disk file, we need 1o decide the following about the file and its intended
purpose:

* Suitable name for the file

+ Data type to be stored

« Purpose (reading, writing, or updating)

+ Method of creating the file

A filename is a unigue string of characters that helps identify a file on the disk. The length of a

filename and the characters allowed are dependent on the OS on which the Java program is executed.
A filename may contain two parts, a primary name and an optional peniod with extension. Examples:

input .data salary
test.doc student . txt
inventory rand.dat

Data type is important to decide the type of file stream classes to be used for handling the data. We
should decide whether the data to be handled is in the form of characters, bytes or primitive type.

The purpose of using a file must also be decided before using it. For example, we should know
whether the file is created for reading only, or writing only, or both the operations.

Copyrighted material

Hidden page

The code above includes five tasks:
s Select a filename
Declare a file object
Give the selected name to the file object declared
Declare a file stream object
Connect the file to the file stream object
Both the approaches are illustrated in Fig. 16.11.

Stroam obpect File object Filename

m Instantiating file stream objects

% 16.11 Reading/Writing Characters

As pointed out earlier, subclasses of Reader and Writer implement streams that can handle characters.
The two subclasses used for handling characters in files are FileReader (for reading characters) and
FileWriter (for writing characters). Program 16.1 uses these two file stream classes to copy the
contents of a file named “input.dat™ into a file called “output.dat”™.

Program 16.1 Copying characters

{1 Copymng characters from one file into another

import Jjava.io.™:

class CopyCharacters

{ public static void main (String args [])

{

{1 Declare and create input and output files
File inFile = new File (Tinput.dat™)
File outFile = new File (Toutput.dat™)

FileReader ins = null; ff Creates file strecam ins
FileWriter outs = null: £ Creates file stream outs
try

(Continued)

 Managing Input/Output Files in Java od

Program 16.1 (Continued)

{
ins = new FileReader (infile) ; ff Opens inFile
outs = new FileWriter (outFile) : /4 Opens outFile
£/ Read and write till the end
int ch:
while { (ch = ins. read()) '= — 1)
{
outs.write (ch)
I
}

catch (I0Exception e)

{
System.out.printin (el
System.exit (- 1)

}
finally // Close files

{
try
{
ins.close ()
outs.close [)
catch (IDException e} { }
}

}

This program is very simple. It creates two file objects inFile and outFile and initializes them with
“input.dat” and “output.dat™ respectively using the following code:
File inFile = pew File (“input.dat™);
File outFile = new File (“output.dat™):

The program then creates two file stream objects ins and outs and initializes them with “null” as
follows:

FileReader ins = null;
FileWriter outs = null;
These streams are then connected to the named files using the following code:
ins = new FileReader (inFile)
outs = new FileWriter (outFile)

This connects inFile to the FileReader stream ins and outFile to the FileWriter stream outs. This
essentially means that the files “input.dat” and “output.dat™ are opened. The statements
ch = ins.read {)

= Progeaminig WRH Java: & Primer

reads a character from the inFile through the input stream ims and assigns it to the varnable ch.
Similarly, the statement

outs . write {ch) :

writes the character stored in the variable ch to the outFile through the output stream outs. The
character —1 indicates the end of the file and therefore the code

while { {ch=ins.read{)) != =1)
causes the termination of the while loop when the end of the file is reached. The statements
ins.close ()

outs.close {) :

enclosed in the finally clause close the files created for reachng and writing. When the program catches
an 1’0 exception, it prints a message and then exits from execution.

The concept of using file streams and file objects for reading and writing characters in Program 16.1
is illustrated in Fig. 16.12.

Fig.1842' Reading from and writing to files

g 16.12 Reading/Writing Bytes

In Program 16.1 we have used FileReader and FileWriter classes to read and write 16-bit characters.
However, most file systems use only 8-bit bytes. As pointed out earlier, Java i'o system provides a
number of classes that can handle 8-bit bytes. Two commonly used classes for handling bytes are
FileInputStream and FileOutputStream classes. We can use them in place of FileReader and
FileWriter.

Program 16.2 demonstrates how FileOutputStream class is used for writing bytes to a file. The
program writes the names of some cities stored in a byte array to a new file named “city.1xt”. We can
verify the contents of the life by using the command

type city.txt

- “ el o o | o -

Program 16.2 Writing bytes fo a file

f1 Writing bytes to a file

import java.io.¥;
class WriteBytes

{
public static wvoid main (String args [])
{
/1 Declare and initialize a byte armay
byte cities [] = {'D". "E". 'L". "H I, "‘n", "M A I
R, AT, ST, AT, LT, 07, N D, "0°. "N, "An" }
/1 Create an output file stream
FileQutputStream outfile = null;
try
{
(1 Connect the outfile stream to “city.txt”
outfile = new FileQutputStream {'city.txt™)
/' Write data to the stream
outfile.write {(cities)
outfile.clase ()
}
catch (IOException foe)
{
System.out.printin (ioe)
System.exit (=1)
}
}
}
type city.txt
DELHI
MADRAS

LONDON

Note that a instantiating a FileQutputStream object with the name of the file creates and opens the
file. We may also supply the filename as a command line argument at the time of execution.

Remember, there are several forms of write{) method. The one we have used here writes the entire
byte array to the file. Finally, we close the file opened for writing.

Program 16.3 shows how FilelnputStream class is used for reading bytes from a file. The program
reads an existing file and displays its bytes on the screen. Remember, before we run this program, we
must first create a file for it to read. We may use this program to read the file “eity.xt™ created in
Program 16.2.

Program 16.3 Reading bytes from a file

{1 Reading bytes from a file

import java.io.*;
class ReadBytes

{ Contimwed)

304 Programming with Jave: A Primer
Program 16.3 (Conrinued)

public static void main (String args [])

{
1 Create an input file stream
FilelnputStream infile = null:
int b:
try
i
ff Connect infile stream to the required file
infile = new FilelnputStream (args [0])
{1 Read and display data
while ((b = infile.read ())} !=-1)
{
System.out .print { (char) b} :
infile.close () ;
catch (I0Exception iope)
\
System,out printin {ioe) .
l
}

}

Note that the program requires the filename to be given as a command line argument. Program 16.3
displays the following when we supply the filename “city.txt™,
Frompt>java ReadBytes city.txt
DELHI
MADRAS
LONDON

Another example code given in Program 16.4 uses both FilelnputStream and FileOutputStream
classes to copy files. We need to provide a source filename for reading and a target filename for writing.
In the example code, we have supplied file names directly to the constructors while creating file
streams. We may also supply them as command line arguments. Note that the file “in.dat™ already
exists and contains the following text.

Java programming for Internet.
Javascript for Web page development,
Perl for Server-side scripting.

Program 16.4 Copying bytes from one file to another

/1 Copying bytes from one file to another
import java.io.*;
class CopyBytes

(Continued)

Copyrighted material

m

Program 16.4 (Confinued)

public static void main (String args [])

{

}

f Declare input and output file streams
FilelnputStream infile = null; // Input stream
FileQutputStream outfile = null: // Output stream
/1 Declare a variable to hold a byte
byte byteRead;
try
{
/{ Connect infile to in.dat
infile = new FileInputStream (“in.dat™) ;
/! Connect outfile to out.dat
outfile = new FileQutputStream {“out_dat”™)
/! Reading bytes from in.dat and
f/ writing to out.dat
do

byteRead = (byte) infile.read ()
outfile write (byteRead) ;

}
while (byteRead != -1) :

1
catch (FileNotFoundException e)

{
System.out.printIn (“File not found™)

catch (I0Exception e)
System.out.printin (e.getMessage ()) .

I
finally // Close files

{
try
infile.close {) :
autfile.close { 1
}
catch (I0Excedption e) { }
]

The command type out.dat will produce the following output:
Java programming for Intermet.
Javascript for Web page development.
Perl for Server-side scripting.

o 1 Pogpag Wk e A PR

Program 16.4 creates infile and outfile streams for handling the input/output operations. The
program then continuously reads a byte from “in.dat™ file (using infile stream) and writes it to “out.dat™
file (using outfile stream) until the end of file condition is reached. We should avoid writing 1o an
existing file, We may use the exists{) method in the File class to check whether the named file already
exists. Example:

File fout = new File (“out.dat”)
if (fout.exists ()})
return ()

This program could also be written using FileReader and FileWriter classes.

@ 16.13 Handling Primitive Data Types

The basic input and output streams provide read‘write methods that can only be used for reading/
writing bytes or characters. If we want to read/write the primitive data types such as integers and
doubles, we can use filter classes as wrappers on existing input and output streams to filter data in the
original stream. The two filter classes used for creating “data streams™ for handling primitive types are
DatalnputStream and DataOutputStream. These classes use the concept of multiple imhenitance as
illustrated in Fig. 16.13 and therefore implements all the methods contained in both the parent class
and the interface.
A data stream for input can be created as follows:

FilelnputStream fis = new FilelnputStream (infile)
DatalnputStream dis = new DatalnputStream (fis)

These statements first create the input file stream fis and then create the input data stream dis. These
statements basically wrap dis on fis and use it as a “filter”, Similarly, the following statements create
the output data stream dos and wrap it over the output file stream fos.

Class Interface

FilterlnputStream

\Fig. 1643 Hierarchy of data stream classes

FileQutputStream fos = new FileQutputStream (outfile)
DatalutputStream dos = new DatalutputStream (fos)

Hidden page

Hidden page

Program 16.6 (Continued)

FileQutputStream (intFile)) ;
for (int 1 = 0: 1<20:1++)
dos.writelnt ((int) (math.random {) *100)) .
}

catch (I0Exception ioe)

{

System.out.printin (ioe.getMessage {)) ;

}
finally
{

try

{

)
catch (I0Exception ioe) { }

dos.close () :

}
/I Reading integers from rand.dat file

try
{
{{ Create input stream for intFile file
dis = new DatalnputStream (new
Filelnputstream (intFile))
for (int i=0; i < 20; i++)
{
int n = dis.readlnt () ;
System.out.print (n+ = ") ; }
|
catch (I0Exception ioe)
{
System out printin (ioe.getMessage ()) : }
fimally
{
Lry
{
dis.close () ;
catch (I0Exception ioe) { }
I

J

Qutput of Program 16.6
78 62 54 56 55 48 48 35 13 64 13 90 10 78 91 42 9 44 B4 b6

310 . Programming with, Java: A Primer
-
@ 16.14 Concatenating and Buffering Files

It is possible to combine two or more input streams (files) into a single input stream (file). This process
15 known as concatenation of files and is achieved using the SequencelnputStream class. One of the
constructors of this class takes two InputStream objects as arguments and combines them to construct
a single input stream.

Java also supports creation of buffers 1o store temporarily data that is read from or written to a
stream. The process is known as buffered ifo operation. A buffer sits between the program and the
source (or destination) and functions like a filter. Buffers can be created using the
BufferedInputStream and BufferedQutputStream classcs,

Program 16.7 Example of concatenation and buffering

{1 Concatenating and buffering files

import Java.io.*;
class SeguenceBuffer
{
public static void main (5tring args [] }
throws [0Exception
{
{{ Declare file streams
FileInputStream filel = null:
FilelnputStream file2 = null;

£ Declare file3 o store combined files
SequencelnputStream filed = null;

{{ Open the files to be concatenated
filel = new FilelnputStream {“textl.dat™)
file2z = new Filelnputitream ("text?. dat”)

{/ Concatenate filel and file2 into file3
filel = new SequencelnputStream (filel, file2)

£ Create buffered input and output streams
BufferedInputStream inBuffer =

new BufferedInputStream (filed)
BufferedOutputStream outBuffer =

new BufferedOutputitream (System. out)

// Read and write till the end of buffers

int ch:
while { {ch = inBuffer.read ()) = = 1}
{

outBuffer_ write ((char) ch)

}

(Confinued)

Copyrighted material

Managing Input/Output Files in Java 311
Program 16.7 (Continued)

inBuffer.close () :
outBuffer.close () ;
filel.close () :
file2. close () :

}

Program 16.7 illustrates the process of concatenation as well as buffering. The program creates two
objects of class FilelnputStream for the files “text].dat™ and “text2.dat™, The two FilelnputStream
objects filel and file2 are used as arguments to the SequencelnputStream constructor to obtain a
single input stream object file3. The file file3 now contains the contents of filel and file2.

The program now creates an input buffer named inBuffer and connects it to filed and creates and
output buffer named outBuffer and connects it to system.out that represents screen. It then uses a
while loop to read all bytes in the input buffer and display them through the output buffer.

The entire process of concatenation, buffering and displaying the contents of two independent files
15 illustrated in Fig. 16.15.

filat + fila2
@/" fle3

Screen

System.out

“Fig. 1618 Mustration of concatenation and buffering

Given the contents of “text] dat™ and “text2.dat™ as follows:
Contents of “text].dat™

Java (tm) Development Kit
Version 1.2
Binary Code License

Contents of “text2.dat™:

This binary code license {"License”) contains rights and restrictions associated with
use of the accompanying software and documentation (“Software”). Read the License
carefully before installing the Software. By installing the Software you agree to the
terms and conditions of this License,

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

37

Graphical Input and Output |

Program 16.11 creates a simple sequential student file interactively using window frames. The program
uses the TextFiled class to create text fields that receive information from the user at the keyboard and
then writes the information w a file. A record of information contains roll number, name, and marks
obtained by a student in a test.

Program 16.11 Creating a file using text fields in windows

import java.io.*:
import java.awt.*:
class StudentFile extends Frame
{

/ | Defining window components

TextField number. name. marks:
Button enter, done:

Label numlLabel. namelabel, markLabel:

DatalutputStream . dos:

/[Initialize the Frame
public StudentFile ()

|

}

/I Setup the window

public wvoid setup ()
{

super (“Create 5tudent File™)

resize (400, 200) ;

seflLayout (new GridLayout (4, &))
{ { Create the components of the Frame

number = new TextField (25)

numLabel = new Label {("Roll Number™)
name = pew TextField (25)
nameLabel = new Label {"Student name”)
marks = new TextField {(25)
markLabel = new Label ("Marks™)
enter = new Button ("ENTER™)

done = new Button ("DONET)

{ { Add the components to the Frame
add (numLabel)

add (number)

add (namelLabel)

add (name) ;

add (markLabel) :

add (marks)

add (enter)

(Contined)

Copyrighted material

Hidden page

aneging iputoupu Fiesndova. 19

Program 16.11 (Continued)

dos. flush [) :
dos.close {)

}
catch (IDException e} { }

[/ Processing the event
public boolean action (Event event. object o)

{
if (event.teqg instanceof Button)
{
it (event.arg.equals (TENTER"))
addRecord ()
return true:
|
}

return super.action (event., o)

public boolean handleEvent (Event event)

|
if (event.get instanceof Button)
{
if (event.arg.equals (“DONE"))
{
cleanup {)
System.exit (0)
return true;
}
}
return super. handleEvent (event)
}

/{ Execute the program
public static void maim (5tring args [] 1

StudentFile student = new StudentFile ()
student . setup ()

}

The program uses classes Frame, TextField, Button, and Label of java.awt package to create the
window and the text fields required to receive a student record. The method setup(} does the job of
setting up the window. The method addRecord() writes the information to the “student.dat™ file
created earlier.

Hidden page

Program 16.12 (Continued)

public void setup ()
{

resize (400, 200)
setLayout {new GridLayout (4, 20) ;

/I Create the components of the Frame

number = new TextField (25}

numLabel =new Label (“Roll MNumber™)
name = new TextField (25) ;

namelLabel = new Label (“Student Name™) ;
marks = new TextField (25) ;

markLabel = new Label ("Marks™)

next = new Button ("NEXT™)

done = new Button (TDONE™)

/! Add the components to the Frame
add (numLabel) ;

add (number) ;

add (nameLabel)

add (name) :

add (markLabel)

add (marks)

add (next) ;

add (done) :

! Show the Frame
show ()

f{ Open the file
try
{
dis = new DatalnputStream (
new FilelnputStream (~student_dat™))

}
catch (I0Exception e)

{
System.err.printin (e_toString ()}) :

System.exit (1)

{/ { Read from the file
public void readRecord ()
{

int n:
String s;

(Continued)

Hidden page

Program 16.12 (Continued)

{
it {event.arg.equals ("DONE™) ||
moreRecords == false)
{
cleanup () :
System.exit (0) ;
return true:
!
}

return super handleEvent (event) :

}

[Execute the program

public static void main (String args [])

{
ReadStudentFile student = new ReadStudentFile () ;
student .set up () .

16.17 Other Stream Classes

Java supports many other input/output streams that we might find useful in some situations. A brief
discussion of some of these streams is given as follows.

Object Streams

We have seen in this chapter how we can read and write characters, bytes, and primitive data types. It
15 also possible to perform input and output operations on objects using the object streams. The object
streams are created using the ObjectinputStream and ObjectOuptutStream classes. In this case, we
may declare records as objecis and use the object classes to write and read these objects from files. As
mentioned in the beginning, this process is known as object serialization.

Piped Streams

Piped streams provide functionality for threads to communicate and exchange data between them.
Figure 16.17 shows how two threads use pipes for communication. The write thread sends data to the
read thread through a pipeline that connects an object of PipedInputStream to an object of
PipedOQutputStream. The objects inputPipe and outputPipe are connected using the connect{)
method.

inputPipe outputPipe

Wite Thread Read Thread

Fig.16.17 Threads using pipes to communicate

Pushback Streams

The pushback streams created by the classes PushbackinputStream and PushbackReader can be
used to push a single byte or a character (that was previously read) back into the input stream so that it
can be reread. This is commonly used with parsers. When a character indicating a new input token is
read, it is pushed back into the input stream until the current input token is processed, It is then reread
when processing of the next input token is initiated.

Filtered Streams

Java supports two absiract classes, namely, FilterlnputStream and FilterOutputStream that provide
the basic capability to create input and output streams for filtering input/output in a number of ways.
These streams, known as filters, sit between an input stream and an output stream and perform some
optional processing on the data they transfer. We can combine filters to perform a series of filtering
operations as shown in Fig. 16,18, Note that we used DatalnputStream and DataQutputStream as
filters in the Program 16.5 for handling primitive type data.

Ingut stresm Output stream
—_— Filler 1 Filter 2 Filker 3 ——————

T

Fig. 16.18 The concept of using fifters

(3
fg 16.18 Summary

In this chapter we have leamed how to work with files for storing and retrieving data. We have
discussed in detail the following:

» How the concept of streams are used for handling all input and output operations.
How stream classes provide capabilities for processing files.

How stream classes are classified into different groups to handle different data types.
How the classes in each group are hierarchically related.

What are the basic methods used for input and output operation.

How files are created and opened for input and output operations.

E 5. iIII.|I i.!II|I.iII |III.|I! m

¢ How Reader and Writer and their subclasses are used for handling characters in files.

How InputStream and OuiputStream and their subclasses are used for handling bytes in files.
How primitive type data are read or written to files using DatalnputStream and
DataOutputStream classes.

How the contents of two files are combined into a single file.

How the buffers are used in input and output operations.

How random access files are created and used for both reading and writing data.

How to read data interactively from the keyboard and write to files.

How to use windows and text fields to provide interactive graphical display while performing
the input and output operations on files.

m Key Terms

Files, Persistent Duta, Unicode, Secondary Storage, File Processing, Object Serialization, Records, Bytes,
Fields, Stream, Source, Destination, Input Stream, Output Stream, Reader Stream, Writer Stream, Tokens,
Concatenation, Buffering, Sequential File, Random Access File, File Pointer, Inieractive Input, Graphical
Interactive 1'0), Windows, Text Fields, Pipes, Filters.

ReEvViEW Qm'nonn

16.1
16.2
16.3
16.4
16.5
16.6

16.7
16.8
16.9
16,10

16,11
16.12

16.13
16.14

16.15
1616
1617
16.18
16.19

What is a file? Why do we require files to store data?

What is a stream? How is the concept of streams used in Java?

What are input and output streams? Explain them with illustrations.

What is a stream classT How are the stream classes classified?

Describe the major tasks of input and output stream classes.

Dristinguizh between

(a) InputStream and Reader classes

(b} OutputStream and Writer classes

Describe the functions of the File class?

Describe the most commonly used classes for handling i/'o related exceptions.

State the steps involved in creating a disk file.

What 15 meant by initializing a file stream object? What are the ways of doing it? Give example code for
each of them.

Which streams must always be used to process external files? Why?

What is a random access file? How is it different from a sequential file? Why do we need a random access
filg?

Create a DatalnputStream for the file named “student.dat™.

Create a RandomAccessFile stream for the file “student.dat™ for updating the student information in the
file,

Write statements to create a file siream thal concatenates two existing files.

Can we open an existing file for writing? If not, why?

How would you check whether a file to be opened for writing already exists?

While reading a file, how would you check whether vou have reached the end of the file?

Write stalements to create data streams for the following operations:

{a) Reading primitive data from a file
{b) Writing primitive data to a file

326 . Programming with Jave: A Primer

16.20 Describe, through appropriate statements, how a double type value is read from the kevboard interactively.

16.21 Write a program that will count the number of characters in a file.

16.22 Modify the above program so that it will also count the number of words, and lines in the file.

16.23 Rewrite Program 16.1 using the FilelnputStream and FileOutputStream classes,

16.24 Rewrite Program 16.4 using the FileReader and FileWriter classes.

16.25 Write a program to create a sequential file that could store details about five products. Details include
product code, cost, and number of items available and are provided through the keyboard,

16.26 Write a program to read the file created in Review Question 16.25 and compute and print the total value of
all the five products.

16.27 Rewrite the program of Review Question 16.25 using a random access file so that we can add more
products to the file, if necessary,

16.28 Write a program that will print the details of the alternate products stored in the random access file of
Review Question 16.27.

DesucGinG EXERCISES

16.1 Find errors in the following code which writes data of one file to another file.
import java.io.*;
public class filel

{
public static void main(String args[])
{
try
{
FileReader fr=new FileReader{ in.dat”)}:
FileWriter fw=new FileWriter{“out.dat”);
int ch;
while{{ch=Ffr.read())!=-1)
fr.writeich);
}
catch(Exception ex)
{
System.out.printinfex):
}
}
}

16.2 Debug the following code for reading a file using FilelnputStream class.
import java.io.™;
class filed
{

public static void main(String args[])

(

if (args.length ==1)
{

try

{
FilelnputStream fetream = new FilelnputStream(args(0]);
DatalnputStream in = new DatalnputStream();

while (im.available()y =0}

{
System.out.printinfin. readline()):
in.close():
}
catch (Exception e)
{
System.err_printin{“File dinput Error™);
]
)
else

System.out .printin()"Invalid parameters™);
}
}

16.3 Find the compile-time error in the program given below,

impart java.io.*:
class FileQutput

{
public static void main(5tring args[])
{
FileQutputStream out:
PrintStream p;
try
|
out = new FileQutputStream():
p = new PrintStream(out).
p.printin (“This is written to a file"):
p.close():
}
catch (Exception e)
{
System_err.printin ("Error writing to file™);
}
}

Copyrighted material

Hidden page

Assertion and Design
by Contract

@ 17.1 Introduction

The concept of Design By Contract (DBC) was first introduced in the Eiffel programming language.
This technique specifies the interaction between various components of an apphecation. To achieve
this, it defines a contract, based on which the components of the application communicate with ¢ach
other. The DBC technique uses assertions to check whether the application meets the requirements
specified in the defined contract. These assertions can be used to test the assumptions made by a
programmer in the Java programming language. In this chapter, we will discuss the concept of design
by contract and assertion.

e
@ 17.2 Design by Contract

The design by contract technigue allows a programmer to provide a detailed specification to create a
software according to the user requirements. Based on this specification, the programmer develops the
software. DBC technigue uses three types of assertions to check whether the software complies with
the specification. The three types of assertions are:

* Precondition: An application must satisfy this specified condition before calling an external
component.

» Posicondition: An application must satisfy this specified condition after the execution of the
external component.

¢ Invariant: The application must always satisfy this specified condition.

For example, consider the operation of a stack that uses precondition, postcondition, and invariant
assertions. When we need to extract an element from a stack, the stack should not be empty. This
condition is checked before extracting an element from a stack. This type of condition is referred to as
precondition. When we push an element into the stack, we need to check whether the element is
correctly added 1o the specified index. This type of condition is referred to as postcondition. The
number of elements in the stack is greater than or equal to zero and should not exceed the capacity of
the stack. This type of condition is referred to as invariant.

% 17.3 Implementing Assertion

An assertion is a statement, which contains a Boolean expression that the programmer assumes to be
true. If the result of the Boolean expression is true, the program execution continues, Here, the assertion
ensures that the assumptions made by the programmer are correct and free from errors. If the result of
the Boolean expression is false, the AssertionError exception will be thrown, This exception contains
error information, such as file name and the line number in which the error has occurred in the program.

We use the assert statement to implement assertions in Java programs. The assert statement can be
represented in two forms. One of the forms 1s:

assert Expressionl; _J

Expression] is a Boolean expression. If the result of the Boolean expression is false, the

AssertionError exception 15 thrown without any information about the bugs that occurred in the
program. Another form of the assert statement is:

assert Expressionl : Expression?:

Expressionl 15 a Boolean expression and Expression2 is a value, which is passed to the constructor
of the AssertionError exception. The following code illustrates the use of the assert statement:

public void division{)

double c=a/b: // bcannot be zero
}

In the above code, the comment line, “b cannot be equal to zero™ can be replaced by using the assent
statement, as shown below:

public void division{)

assert b'=0:
double c=a/b:

}

Assertion and Design by Contract N

If the expression in the assert statement is false, it specifies that the program contains errors and this
process is referred to as assertion failure.

The value of the Expression2 in the second form must be a non-void expression. Consider the
following example:

assert age=(: “The age of a person should not be less than zero™:

where, age>0 is a Boolean expression. The second expression in the assert statement is a String value
and it is passed to the constructor of the AssertionError exception. If the assertion failure occurs, the
string value acts as additional information about the errors that anse in the program,

Often readers may get confused with the usage of assertion and exception. The difference between
the exception and assertion is:
= Exception is used to test the abnormal conditions, such as division by zero, ArraylndexOutOf
BoundsException occurred while executing the program and it does not ensure that the program
18 running correctly.
* Assertion is used to test the condition assumed by the programmer, and it ensures that the
program is running correctly.
Compiling the Assert Statement

As we know, we use the following command to compile a Java program:
javac filename. java

The above command does not compile the programs that contain the assert statement. Therefore, we
need to use the following command to compile the programs that use the assert statement:

java -source 1.4 filename. java

Enabling and Disabling Assertions

Java provides the command line parameters to enable and disable assertions. The syntax of using the
command line parameter to enable assertion is:

-3 or -enableassertions

For example, the command used to run the Java file, Myfile java, which enables assertion is:
java -emableassertions Myfile. java

Or
Java -ea Myfile_java

The syntax of using the command line parameter to disable assertion is:
-da or disableassertions

For example, the command used to run the Java file, Myfile java, which disables assertion is:
Java -disableassertions Myfile.java

Or
java -da Myfile_ java

P s
.f-‘j; 17.4 Assertion Rules

Assertion i used to check the validity of an assumption, which is made by a programmer at the time of
execution. There are certain rules that govern the usage of assertions in a program. The assertion rules
are:
* Check the method arguments
Use assertion in the default case of the Switch statement
Make use of an assertion descriptive
Avoid processing in an assertion condition
Avord catching assertion related exception
Avoid the use of evaluating more than one condition in an assertion

Checking the Method Arguments

We need to check the values passed to the arguments of a method before performing any operation on
these values. We check the argument values in the methods, public or protected, or the local package.
For example, consider the following program to add two positive numbers.

public void addition(int a, int b)
{

int c=a+b:
)

In the above code, the user may provide a negative value of the arguments that results in an
maccurate solution. Therefore, we need to check whether the values of the arguments are positive
before performing the addition operation. The following code satisfies the first rule of assertion:

public void addition(int a. int b}

if{a=0)

1f{b=>0)
int c=a+b;
}
)

Using Assertion in the Default Case of the Switch
Statement

We can use assertions in the switch statement with no default case. In such cases, we add the default

case to specify the assert statement. If none of the conditions are satisfied in the switch case and the

assertion 15 enabled, the application causes the assertion failure and throws AssertionError exception.
For example, consider the following example:

public String Number()

{
String code:
string description:

Hidden page

Hidden page

Assertion and Design by Contract _ 335

The above code throws the IllegalArgumentException exception which anses when the name is
specihed as null,

Avoid Evaluating more than one Condition in an Assert
Statement

We need to avoid using more than one condition in an assert statement. When we use more than one
condition in an assert statement it may be difficult to find which of the conditions is not satisfied. For
example, consider the following code which uses more than one condition in an assert statement:

public void setmame{String firstName, String lastname)

{

if((firstName==null}||(TastName==null})

{
throw new I1legalArgumentException(~firstName or lastName cannot be null™):
\
}
private void setname(String firstName, String lastMName)
{

assert (firstName = null) && (TastMame "= null) : “FirstHame or LastMame cannot
be null™:

}

In the above code, if one of the conditions fails, it is difficult for the programmer to identify which
of the assumptions causes failure, Therefore, the above code can be rewritlen as:

public void setname(string firstMame. String lastMame)

{

if{{firstName==null}

{

throw new 111egalArgumentException(~firstName cannot be null™):
}

if ({lastName=null)

{

throw new 117egalArgumentException{™Last MName cannot be null™):
}

}

private void setname(5tring firstMame, String lastName)

{

assert (firstName '= null): "FirstMame cannot be null™;
assert(lastMame !'= mnull): “Last name camnot be null™:

336 Programming with Java: A Primer

@ 17.5 Creating a Java Program Using
Assertion

In this section, we will create a simple Java program to show the usage of assertion. This program helps
the reader to implement assertion. For example, consider the division of two numbers as shown in
Program 17.1. Here, the assert statement uses the assumption that the divisor should not be zero.

Program 17.1 Using Assertion

public class division
{
vaid assertcheck(int a, int b)
{
assert bl=0: “The wvalue b cannot be 2era”:
double c=arb;
System.out . printin{“The result 15 "+C}:
}
public static void main(String args{])
{
division divenew division():
div.assertcheck (5, 0});
}
}

When we compile and run the above program, the assertcheck() method is called and value of the
argument is passed to the parameters a and b. The value of b should be checked using the assert
statement. If the assertion fails, the control will be transferred to the expression2 in the assert statement.
Here, the control will not be transferred to the next statement after the assert statement. The output of
the above program is:

The value b cannot be zero.

DesuGGinG ExErcISES

17.1 Find the compile-time error in the following program for dividing two numbers:
public class divide
I
1
void diviston{int first, int second)
|
assert second: “The second value cannot be zero™:
double result=firstssecond:
System.out.printin{"The result is ~ + result);
i

public static void main{String args[])

{

divide d=new divide();
d.division{1d, 2};
}
}
Ans: The first expression passed to assert statement should retum a Boolean value. In the above code, it is
returning an int value, which will result in a compile-time error.
public class divide

{
yoid division{int first. int second)
{
assert second!=0: “The second value cammot be zero™:
double result=first/second:
System.out.printin(“The result is ° + result).
}
public static void main{String args[])
{
divide d=new divide();
d.division(10, 2}:
}
}

17.2 Debug the following code for checking negative values using the assert statement.
public class CheckNegative

{
public void CheckAssert(int value)
{
assert <= value ; "Value must be non-negative: value= ™ + value;
System_out.printin{"0K™}:
}
public static void main{ String[] args)
{
CheckNegative cn = new CheckNegativel);
System_out print{“cn.CheckAssert(2): "):
cn.CheckAssert(2):
System.out . print(“cn.CheckAssert(-2): "):
cn.CheckAssert (=27
}
]

Ans: The correct syntax for assert statement 15 assert Expressiond © Expression?; Replace ; with : in the above
code to compile and run the program successfully.
public class CheckNegative
{

public void CheckAssert{int value)

{

assert 0 <= value : "Value must be non-negative: value=
System.out.printIn(0K"):

+ value;

Copyrighted material

}
public static void main{5tring[] args)
{
CheckNegative cn = new CheckNegative():
System_out .print(“cn, CheckAssert(2): "}:
cn. CheckAssert(2):
System.out.print(“cn. CheckAssert(-2): "):
cn.CheckAssert(-2):
]
]
17.3 On running the command java —ea —da:superEx sub for executing the program, what will be owtput of the
program?7T,
class superkEx
{
public void check(boolean test)
{
assert test : “Assertion failed: test is ~ + test;
System.out.printin{"0K"):
}
I
public class sub extends supertx
public void checkTest{boolean test)
{
assert test : "Assertion failed: test is " + test:
System.out printTn(0K™):
]
public static void printAssertionError(AssertionError ae)
{
StackTracetlement[] stackTracebElements = ae.getStackTrace();
StackTracetlement stackTraceElement = stackTraceblements[0]:
System.err printin{"AssertionError™);
System.err printin(® Class = ° + stackTraceElement .getClassMame());
System.err. printIn(™ Method = ° + stackTracellement .getMethodName()}).
System.err_printin{™ Message= ~ + ae.getMessage()):
}
public static void main{String[] args)
{
try
{

sub sublbj = new subl):
System.out.print(“subDbj.check{ false J: ")
sub0bj.check{false):

System. out . print(™subDbj.checkTest(false }: ")
sublb] . checkTest(false):

Copyrighted material

Hidden page

340 Programming with Java: A Primer
I

error.printStackTrace [);

} }

public static int AssertValue ()

{
int value = 2:
assert value!= 2 : "Value given is 2.7:
return value:

]

}

17.5 In the following program what condition will throw the java.lang. AssertionError error?
class Withdraw
I
public static void main(String args(])
{ -
System. out . printin{withdrawimount (5000.10003)
System out printini{withdrawimount (2000,30007):

}
public static double withdrawimount(dou>le balance , double amount)
{
assert balance >= amount:
return balance — amount :
}

}

Ans: withdraw Amount 2000, 30007 will throw the java.lang AssertionError error because balance is lesser than
the amount to be withdrawn, so the assertion will fail.

Copyrighted material

Java Collections

!'.."
‘@ 18.1 Introduction

The collections framework which is contained in the java.util package is one of Java's most powerful
sub-systems, The collections framework defines a set of interfaces and their implementations 1o
manipulate collections, which serve as a container for a group of objects such as a set of words in a
dictionary or a collection of mails. The collections framework also allows us to store, retrnieve, and
update a set of objects. It provides an API to work with the data structures, such as lists, trees, maps,
and sets. In this chapter, we shall discuss the interfaces, classes, and algonthms available in the
collections framework.

”~
‘g 18.2 Overview of Interfaces

The collections framework contains many interfaces, such as Collection, Map, and Iterator. Other
interfaces of the framework extend these interfaces. The interfaces available in the collections
framework can be structured as shown in Fig. 18.1. The interfaces List and Set are the subinterfaces of
the Collection interface. The SortedMap interface is the subinterface of the Map interface. The
Listlterator interface is the subinterface of the lterator interface. Brief description of these interfaces is
provided in Table 18.1.

- |
List
e Quaus
Sat
- Soredsel
Map
SortedMap |
Ihesrator
= LisiHeralor |
Fig.18.1 Interfaces defined in the Coflections Framework
"2 0. Table181 Description ofinterfaces
Interface Description
Caollection collection of elements.
List{extends Collection) sequence of elements.
Queue (extends Collection) special type of list
Set{extends Collection) collection of unique elements.
SonedSet{extends Set) sorted collection of unigue elements,
Map collection of key and value pairs, which must be unique,
SortedMap{extends Map) sorted collection of unigue key value pairs.
Iterator object used o traverse through a collection.
Listlterator {extends lterator) object used 1o traverse through the sequence.

The Collection Interface

All collection classes must implement the Collection interface, The Collection interface defines some methods,
which enable us to access the objects of a collection. Table 18.2 describes these methods.

Copyrighted material

Java Collections 343

“Table 182 Methods Defined in the Collection Inferface ~~

Methods Descripiion

add{object o) Retums true if the object is added to the specified collection.

addAllcollection ¢} Returns true if the entire object in the collection is added 1o
the specified collection.

clear() Removes all elements from the specified collection.

contains{object o) Retums true if the collection contains the specified element.

containsAll collection ¢) Returns true if the collection contains all the elemenis in the
specified collection.

equalsiobject o) Retums true if the specified object matches with the object in
the collection.

hashCode) Retumns the hasheode for the collection.

isEmpty() Retum true if the collection is empty.

iteratan]) Retums an ierator over the elements in the collection.

remove{object o) Remms true, if the specified element is present in the
collection and removes the object from the collection.

removeAllicollection c) Retums true, if all the elements in collection ¢ is removed
from the specified collection.

retainAll{collection ¢) Retums true, if all the elements in Collection ¢ is retained in
the specified collection.

sizel) Retums the number of elements in the collection.

toArray() Returns an array containing all of the elemenis in the
collection.

toArmaviobject]] a) Rewrns an array of object if the array contains all the

elements in the specified collection.

The methods, add(), addAIN), and remove() that modify the collection objects, will throw an
exception, UnsupportedOperationException, when the collection does not support the respective
operation. The methods of the Collection interface will throw the ClassCastException exception,
when we add an incompatible element to a collection. For example, some collections may not support
null elements.

The Set Interface

The Set interface extends the Collection interface and it contains the methods that are inhenited from
the Collection interface. The Set interface does not allow the use of duplicate elements in a collection.
Hence, the add() method retums false, if we add the duplicate element to the collection.

The List Interface

The List interface contains an ordered sequence of elements available in a collection. It allows
duplicate elements in the List. The List interface inherits the methods of the Collection interface. In
addition to these methods the List interface also contains the methods described in Table 18.3.

. i

Programming with Java: A Primer

Table 18.3 Methods Defined in the List Interface

Method

Deseripiton

add (int index, object o)
addAldl (int index, collection ¢)

et (int index)
indexOf (object o)

lastindexOf {object o)

listIterator ()
histiterator {int index)

remiovie {int index)
set (it index, object o)

subList {inf startindex, int endindex)

Adds the element, o in the specified index of the list,

Adds all the elements of collection, ¢ in the specified index of
the list.

Retumns the element available in the specified ndex of the [ist,
Returns the index of object o in the list, If there are more than
one occurmence of object o, the method returns the index of the

first occurrence. If the object o is not available in the list, the
micthod retwmns —1.

Returns the last index of the object o in the list. If the object o
15 not available in the hist, the method retums —1.

Returns a list iterator of the elements.

Returns a hist iterator of the clements starting from the
specified index of a list,

Removes the element at the specified index of the list.
Replaces the element in the specified index with the specified
clement.

Returns the elements available from the specified startindex o
the endindex,

The SortedSet Interface

The SortedSet interface is used to sort the elements of a collection in ascending order. The SortedSet
interface extends the Set interface, which in tum extends the Collection interface. The SortedSet
interface does not allow duplicate elements in a set. In addition to the methods defined by the Set
interface, the SortedSet interface contains the methods listed in Table 18.4.

Methods Description

comparaton) Returns the comparator object, If the elements in the SomedSet
are in ascending order then it returns null.

first(} BEemrns the first element from the SortedSet.

headset{ Object woElement) Returns the number of elements less than that of the elements
specified using the toElement object. The elemenis are
returned from the sorted set.

lasi() REeturns the last element from the SoredSet.

subSet] Object FromElement, Returns the elemenis between the range specified by the

Object ToElement) objects, FromElement and ToElement. Here the returned set

includes the FromElement and excludes the ToElement.

tailSet{ Object FromElement) Retumns the elements from a sorted set that are greater than or

cqual to the FromElement,

Copyrighted material

Java Golloctions 345
The Queue Interface

The Queue interface extends Collection interface and declares the behaviour of a quene, which is often
a first-in, first-out list. In a queue, elements can only be removed from the head of the queue. The
Queue interface defines a few methods as listed in Table 18.5.

R pn : e AT ™ T
U0 O Tabie 188 Methods Defined inQuewe Tl
Methods Description

element() Retums the element at the head of the queue. The element is
mot remmoved,

offer{Object o) Attempts to add an element to the queve. Retums true if
added, false otherwise.

peck() Retums ithe element at the head of the queue. The element is
not remmo ved.

poll{) Returns the element at the head of the quewe after removing
the element.

remove]) Returns the element at the head of the queue after removing the
clement.

Note: 1. The mothods element() and peeki() are similar but, if the queue is empty, element() throws
the exception NoSuchElementException w hile peek() returns null

2. The methods poll() and remove() perform the same job but, when the queue is empty, poll()
returns null while remove{) throws the exception NoSuchElementException.

The Map Intnrfnr-m

The Map interface maps unique key elements to their values. For example, in a mail server, each mail
1d i1s mapped to a unique password. The Map interface allows us to view the elements of a collection as

set of keys, collection of values, and the mappings of ke y-value pairs. Table 18.6 describes the methods
of the Map interface.

Table 18.6 Methods Defined in the Map I

Methods Description

clear() Remaoves all the mappings from a map.

containsKey(Object key) Returns true if a map contains mapping for the specified key.

containsValue{ Object value) Retums true i f the specified value maps with one or more key
in a map intet face.

entrySet]) Betums the kerv-value pair contained in this map.

equals{Object o) Retums true i1” the specified object maps with an object of a
map interface,

get{Object kev) Retumns the value, which is mapped to the specified key.

isEmpty() returns true if .2 map contains no key-value mapping.

keySet() Returns the ke'vs in a map. If we remove a key from the map,

the correspond ing value will also be removed.

[Continued)

Table 18.6 (Continued)

put{Object key, Object value) Maps the specified key with the specified value.
putAdl{ Map t) Copiedi all the specified key value pair from a specified map to
the ma p with which we are currently working.
remove(Object key) Remaorves the specified key from the map.
size() Returns the number of key-value mappings available in a map.
The SortedMap Interface

The SortedMap interface extends the Map Interface. The SortedMap interface contains elements
in ascending order. In this, the sorting is based on the keys. The functionality of the SortedMap
is analogous to the functionality of the Sorted Set interface. This Map interface is implemented
in the TreeMap class. Table 18.7 describes the: methods of the SortedMap Interface.

] oA - o 5F

0 Teble 18.7 Methods Defiied In the Sortediap Interface ... Sk
Methods Description

comparator) Returns the comparator of the sorted map. It returns null, if
the sorted map uses natural ordering for their kevs.

firstKevi) Remurns the first key of the sorted map.

headMap({Object end) Returns the keys of the sorted map that are less than the
spezcified end object.

lastBey() Re tums the last key of the sorted map.

subMap{Object start, Object end) Returns the keys of the sorted map that are greater than or

e ual 1o the specified start object and less than are equal 1o
thiz specified end object.

tailMap (Object start) Roztumns the keys of the sorted map that are greater than or equal
to- the start object,

The lterator Interface

The Iterator interface enables us o sequentially traverse and access the ¢lements contained in a
collection. The elements of a collection can be accessed using the methods defined by the Iterator
interface. Table 18.8 describes the methods o f the Tterator interface.

hasMexi|) Returns true if the collection contains more than one element.
nexi(} RBeturns the next element from the collection.
removel) Remove the current element from the collection.

The next() method of the [terator interfac e returns the next element if it is available in the collection.
If there is no such element in the collectiory, it will throw the exception NoSuchElementException.
The remove{) method throws the excepticn lllegalStateException when there is no element in the

o Colectons 7
collection. Using the Iterator interface, we can insert elements only at the end of a list. If we need to

insert elements at the required location of the list, we should use the Listlterator interface, which
extends the Iterator interface. The Listlterator interface contains a method named add(int index,

Object obj). This method allows us to add an element at the required location based on the index value.

@ 18.3 Owverview of Classes

The classes available in the collections framework implement the collection interface and the
subinterfaces. These classes also implement the Map and Iterator interfaces. Table 18.9 lists out the
classes and their corresponding implementations.

.--' -..":F' '..: '|I..'_. s v -‘:;! i . II'I?.':'.. i i T
Wi ol ot a1 AN :

H £ i, ! B L e ek, A, - RN
Class Name of the interface
AbstractCollection Collection
AbstractList List
AbstractCQuecue Qucue
AbstractSequentialList List
LinkedList List
ArrayList List, Cloneable, and Seralizable
AbstractSet Set
EnumSet et
HashSet Set
PriorityOueus Queue
TrecSet Set
Vector List, Cloneable, and Serializable
Stack List, Cloneable, and Senalizable
Hashtable Map, Cloneable, and Serializable
The AbstractCollection Class

The AbstractCollection class implements the Collection interface. Therefore it contains all the methods
available in the Collection Interface. We use the AbstractCollection class to implement a collection,
which cannot be modified. For example, a collection containing the months of a year cannot be
modified.

We can also implement collection using the AbstractCollection class by overniding the add{object o)
method and implementing the remove (object o) method. The constructor for this class is represented
as:

Protected AbstractCollection()
The AbstractList Class

The AbstractList class extends the AbstractCollection class and implements the List interface. We use
the AbstractList class to access the data randomly. For example, we can use the index values to access

the elements of an array at random. The Constructor for this class is represented as:
Protected Abstractlist()

The AbstractList class extends the methods, such as add{Object o), clear{), iterator{) of the
AbstractCollection class. It also inhenits the methods from the List interface.

Note The AbstractSequentialList class is used to access the elements of an array sequentially.
The ArrayList Class

The ArrayList class extends the AbstractList class and implements the interfaces, such as List,
Cloneable and Serializable. Using the ArrayList class, we can use dynamic array in Java applications.
The dynamic array 1s an array in which the armay size is not fixed in advance. Therefore, we can change
the size of an array at run time using the ArrayList class. Every instance of the ArrayList class is
allowed to store a set of elements in the list. The capacity increases automatically as we add elements
to the list.

The constructor of the ArrayList takes three forms:

¢ ArrayList(): Creates an empty list. The capacity of the list is initialized to ten.

e ArrayList{Collection c): Creates a list to which the elements of the specified collection are
added.

* ArrayList(int capacity): Creates an empty list. The capacity of the list is initialized to the
specified value.

The ArrayList class inherits the methods from the List interface. The elements of an array can be
accessed directly using the get() and set() methods. The add() method is used to add an element to the
array list and the remove() method is used to remove an element from the array list. Program 18.1 that
illustrates the usage of the add() and remove() methods of the ArrayList class:

Program 18.1 Using the methods of the ArrayList Class

import java.util.*:
public class ArraylListExample
{
public static void main{String args[])
{
ArrayList arraylist=new ArraylList():
System, out .printin{ Initial size of arraylist™ +arraylist.size());
arraylist. add("A"):
arraylist.add("8");
arraylist.add("C™);
arraylist.add("D");
System.out.printin(~Size of arraylist after adding the element™+ arraylist.size{)):
System.out _printin({“Contents of arraylist™+arraylist):
arraylist.add(2. “E"):
System.out.printin{“changed contents of arraylist by adding element at
the given index: “+arraylist);

{ Continied)

Hidden page

350 ~ Progrs

Program 18.2 (Coniinued)

}

Tist.addFirstio);

}
public void pushZ (Object obj)

{
1ist.addLast{obj):

}
public Object bottom()

|
return 11st.getlast().

}
public Object pop()
\

return 1ist.removeFirst():
I

public static void main(Strings args[])

|
Car myCar:

Bird myBird:

MyStack s = new MyStack():
s.pushl (new Car{)):
s.push2inew Bird{));

myCar = (Car)s.pop():

System.out.printin(“The first element in the list: “+myCar):

myBird=(Bird)s _bottom():

System, out . printin(~The last element in the list: “+myBird):

}

class Car

{

String carl, car?, card, card:
Car()
{
carl="Benz";
car2="Toyoto";
card="Qualis™;
card="Santro”;

!

]
class Bird

String birdl, bird2, birdd:
Bird()

{

{ Continued)

Copyrighted material

 Java Collections 351

Program 18.2 (Consinued)

pirdl="parrot .
birdd="duck”
bird3d="raven" :
}
}

The output of Program 18.2 is:

The first element in the 1list: Benz
The last element in the list: raven

The HashSet Class

The HashSet class extends the AbstractSet class and implements the Set interface. The AbstractSet
class itself extends the AbstractCollection class. The HashSet class is used to create a collection and
store it in a hash table. Each collection refers to a unique value called hash code. The hash code is used
as an index to associate with the object, which is stored in the hash table. This type of storing
information in a hash table is called hashing. Constructors for the HashSet class are:

¢ HashSet(): Constructs an empty HashSet.

¢ HashSet(Collection ¢): Initializes the HashSet using the element ¢

& HashSet(int capacity): Initializes the capacity of the HashSet

¢ HashSet(int capacity, float fillratio): Initializes the capacity and the fill ratio of the HashSet.

The value of the fill ratio ranges from 0.0 to 1.0. This value is used to set the initial size of the hash set.
If the number of elements is greater than the capacity of the hash set, the size of the hash set is expanded
automnatically by multiplying the capacity with the fill ratio. The default value of the fill ratio is 0.75.

The HashSet class inherits the methods of its parent classes and the methods of the implemented
interface. Program 18.3 illustrates the use of methods of the HashSet class. It is important to note that
HashSet does not guarantee the order of its elements. Elements may be stored in any order.

Program 18.3 Using the methods of the HashSet Class

import java.util.*;
class HashSetExample

{

public static void main(String args[])

{
HashSet hs=new HashSet(}:
hs .add("D")
hs . add{"A™);
hs.add("C™):
hs.add("B™);
hs _add("E™):
system.out.printin(The elements available in the hash set are: “+hs);

}
}

The output of Program 18.3 is:
The elements available in the hash set are: [D. A, C. B. E]

Hidden page

- A : el s -
Methods

: . g L
g €

A

Descriprion

addElement(Object element)

capacity()
contains{Object element)
confainsAlli Collection ¢)

elementAt{int index)
ensureapacityint minimumcapacity)
getling index)

setElementAt(Object e,int index)
setSize(int newsize)

size()
toString()

Adds the specified element to the end of the vector and
increments the size of the vector by one.

Returns the current capacity of the vector,

Retumns true if the specified object is present in the vector.
Returns true if the vector contains all the elements specified in
the collection.

Retums an element at the specified index.

Sets the specified minimum capacity to the size of the vector.
Returns the object, which is available in the specified position
of the vector,

Replaces the element at the specified index with specified
element.

Sets the size of the vector to the specified size, newsize.
Returns the size of the vector,

Return a String representation of this vector,

Program 18.5 Example of using the Vector Class

import java.util, Iterator:
import java.util.Vector:

public class VectorExample
{

public static void main(String[] args)

{

Vector fruits = new Yector():
fruits.add{"Apple”}:
fruits.add({ Orange™):
fruits . add(Grapes };
fruits.add("Pine”);

[terator it = fruits.iterator():
while{it hasNext()}

System_out.printIn{it_next{}};

The output of Program 18.5 is:
Apple

Orange
Grapes
Pine

The Stack Class

The Stack class extends the Vector class, In addition to the inherited methods from the Vector class, the
Stack class contains some methods to perform operations, such as push, pop, peek, and search. The
constructor of Stack class can be represented as:

= Programming with Java: A Primer
stack()

The above constructor 15 used to create an empty stack, The Stack class uses the First In Last Out
(FILO) mechanism. Table 18.12 describes some of the methods of the Stack class:

Retums true if the stack 1s empty.
Retums the element at the top of the Stack.

Bemoves the element at the top of the Stack and returns the
element that is removed from the Stack.

puzhi) Adds an item to the top of the Stack.

For example, consider the Program 18.6 that adds string values to a stack.
Program 18.6 Example of using the Stack Class

import java.util._*:
public class stackex

{
public static void main{String args(])
{
stack st=new Stack();
st.push{“Java~):
st.pushi{”latest™);
st.push("Edition”);
st.push{"-fifth").
System.out . printin{ The elements in the Stack: "+si);
System.out printin(“The element at the top: “+st.peek()):
System. out printin(~The element poped out of the stack: "+st_pop{)):
System,out . printIn{"The element in a stack after pop out an element: "+st):
System.out . printin(~The result of searching: "+st.search{"r u"}:
}
}

The output of Program 18.6 is:
The element in the 5Stack: [Java., latest. Edition. -fifth]
The element at the top: -fifth
The element popped out of the Stack: -fifth
The element in a stack after pop out an element: [Java. latest. Edition]
The result of searching: -1

The Hashtable Class

The Hashtable class implements the interfaces, such as Map, Cloneable, and Serializable. The
hashtable is used to store values in the form of map key with value. The key should implement the
hashcode and equals methods to store and retrieve values in a hashtable. The constructors of the

Hashtable class are:

Copyrighted nraterial

+ Hashtable{): Creates an empty hashtable with the default initial capacity as 11 and the

loadFactor as 0,75,

» Hashtable(int initialCapacity): Creates an empty hashtable with the specified initial capacity
and the default loadFactor.

* Hashtable{int initialCapacity, float loadFactor): Creates an empty hashtable, which has the
specified initial capacity and loadFactor.

* Hashtable{Map m): Creates a new hashtable with the specified map.

Program 18.7 Using the Hashtable Class

import java.util.Enumeration:
import java.util].Hashtable:
public class HashTableExample

public static void main{String[] args)

{
Hashtable ht = new Hashtable():
ht.put{"Iteml”, “Apple”);
ht.put{"Item2”. "Orange”):
ht.put(“Ttem3". “Grapes™):
ht.put{"Itemd”, “Pine”):
Enumeration e = ht . keys():
whilel(e. hasMoreElements())
{
String str = (5tring) e.nextElement();
System. out printin{ht get{str)):
)
}
}
The output of the above program is:
Apple
Urange
Grapes
Ping

18.4 Overview of Algorithms

The collections framework supports several algorithms that allow us to operate on collections. We can
use these algorithms to sort, shuffle, manipulate, and search a set of elements in a collection. Some of
the algorithms available in the collections framework are:

Sorting

Shuffling

Manipulating

o Searching

These algorithms are contained in the Collections class. Table 18.13 shows some algorithms defined
in the Collection class.

VK

0 T A
Methods

Description
hinarySearch{Listl, Object v) Searches the specified object in the specified hist. It retumns the
position of the specified object in the list. If the specified
object is not in the list, then it retums -1,
copy(List src, List dest) Copies elements from one list to another.

disjoint{ Collection ¢1, Collection ¢2)
frequency{ Collection ¢, Object o)

indexOfSubList(List src, List dest)

lastIndexOfSubList(List src, List dest)

replaceAll{List 1, old val, new val)

reverse List 1)
shuffle{List 1, Random r)

swap(List], index i1, index i2)

Retums true if no common element is available in the two
specified collections.

Retumns the number of elements that equal to the specified
object in the specified collection.

Returns the index of the first occurrence of the specified
destination list in the specified source list and =1 if the source
list does not contain the occurrence.

Returns the index of the last occurrence of the specified
destination list in the specified source list and -1 if the source
list does not contain the occurrence.

Replaces all occurrences of the old value in the list with the
mew value,

Reverses the order of elements in the list,

Shuifes the elementz in the list by wsing ras a source o
generate random values.

Interchanges the elements in the specified indexes of the list.

The Sort Algorithm

The sort algorithm enables us to arrange the elements of a list in a certain order. The ordering depends
on the type of elements. If the list contains a set of string elements, the sorting is done alphabetically. If
the list contains a set of numeric elements, the elements are arranged in ascending order,

The Shuffle Algorithm

The shuffle algorithm shuffles the elements of a list such that the current order of the list is destroyed.
This algorithm arranges the elements using all possible permutations. For example, we can use this
algorithm to shuffle objects in a memory game.

Manipulating Algorithms

The Collections class provides algorithms to perform operations, such as fill, reverse, copy, swap, and
add on a list of elements on a collection. The reverse operation reverses the order of elements in the list.
The fill operation replaces the elements of a list with a specified elements. The copy operation copies
the elements of one list to another. The swap operation swaps the specified elements in a list. The
addAll operation adds the specified elements to a list.

The Search Algorithm

The search algorithm allows us to search an element in a collection. Here we use the binary search
algorithm. To find an element from a list, we need to traverse the entire list. We can use the binary
search algorithm in a sorted list. The steps to find an element from a list using binary search algorithm
are:

dov Catctons se7

Step 1: Sort the elements in the collection.

Step 2: Find the middle element of the collection.

Step 3: Compare the specified element with the middle element of the collection.

Step 4: If the middle element is greater than the specified element, traverse the first half of the list.
Else traverse the second half of the list.

The binarySearch{) method of the Collections class implement the binary search algorithm, We
need to pass the collection and the element to be searched from the specified collection as arguments to
the binarvSearch() method.

If the element in the collection is not available in the sorted order, we need to pass the comparator as
an additional argument to the binarySearch() method. This comparator is used to sort the elements of
the collection according to the condition specified in the comparator.

Program 18.8 Use of binarySearch method

Import java.util. *;
Class algorithmdemo

{
public static void main{5tring args[])

{
Linkedlist l=new LinkedList{):
1.addinew String{“Java")}:
1.add(new String(™is7)):
1.add(new String{"platform™));
l.add(new 5tring(”Independent”)}:
Comparator r=Collections.reverselrder():
Collections.sort(l, r);
Iterator iter=].iterator();
System.out .printin{"List sorted in reverse order”):
While(iter hasNext())
System_out.printin{iter.next() + ")
Collections shuffle(l):
Iter= 1. iterator():
System_out.printIn{"List shuffled : "):
While(iter hasNext())
system. out. printin{iter. next() + ")
System.out printin{):
System out printIn{ "Minimum :° + Collections . min{l)):
System.out .printind "Maximum: “+ Collection.max(1));

The output for the above program is:

List sorted in reverse order: Java is platform independent
List shuffled:

Minimum: 1independent

Maximum: platform

Copyrighted material

18.1 The following code creates an object of List interface and adds and removes items from it Will this code
compile successfully?
import java.util, *:
public class ListInterfaceExample
{
public static void main(String[) args)
{
List<Strimg= 1ist;
l1ist = new Arraylist<String=():
list.add{"a™);
Tist.add{0.°b"):
list add(1.°c"):
list . add(1.7d"):
list . add{3,"d"):
System_out _printin(“List 1s "+1list):
int size = list.size():
Object element = Tist.get(list.size()-1);:
System. out . printin(“Element at “+list.size()+" location i1s “+element);
element = 1ist.getltem(0):
System out.printin(“Element at 0 location 15 “+element):
Collections.sort{11st):
Collections.sort({list, S5tring.CASE_INSENSITIVE_ORDERY;
System out _printin(~List after sort is “+list):
boolean b = 1ist. remove("c”):
element = 1ist delete(0);
System.out printin(~List after removal of ¢ and lst element “+list);

}
}

Ans: No, list object does not contain any function with the name of getltem and delete.

import java.util.*®:
public class ListInterfaceExample
{

public static void main(String[] args)
{
List<String> 11st;
115t = new ArraylList<String=({):
list. add("a"):
list.add{0."b"):
list.add(1l,"c™});
list . add(l."d"):
list.add{3,.°d"):
System.out.printin{"List is "+list):

Copyrighted material

| =

int size = list.size():

Object element = list.get{list.size()-1);
System.out . printIn{"Element at “+1ist.size()+” location is “+element):
element = 1ist.get(0):

system.out.printin{"Element at 0 location 15 “+element);
Collections. sort{1ist):

Collections.sort({list, String,CASE_INSENSITIVE ORDER):
System.out.printIn{"List after sort is "+list):

boolean b = Tist. remove(c™):

element = Tist.remove(D):

System_out.printin{’List after removal of ¢ and 1st element “+1ist).

}
}
18.2 The following code will play with the objects of Set interface. Will this code compile successfully?
impart java.util.*:
public class SetsExample
{

public static void main{5tring[] args)

{
Set<String> setl = new HashSet<String=():
setl.add("a™):
setl.add(™b™};
setl.add("c™);
System.out.printin{"Setl is “+setl);
setl. remove("C™);
System_out .printin{"5etl after removing ¢ 1s “+setl):
int size = setl.size():
System.out.printIn{"Size of setl is "+size);
setl.add("a™});
size = setl.size():
System out.printin{"5ize of setl after adding duplicate item 1s "+size):
boolean b = setl.isContains{"a"):
system.out.printin{”Is Setl contains a "+b);
System.out.printIn{“Is Setl contains ¢ “+setl.contains(™c™)):
Set<String> set? = new HashSet<String=():
set?.add("e™);
setd.add("d™);
set?. add(~f");
System.out.printin{"5et2 is “+set2):
set? . add(setl);
sSystem.out .printin{ Set2 15 after merging setl elements +setl):
set?. removeAll(setl);
system.out.printin(~5et2 is after deleting setl elements ™ +setd):
set?. addAll(setl);

Copyrighted maierial

Hidden page

Hidden page

362 Programming with Java: A Primer
Collections sort(v):
for (Enumeration e = v_elements(): e.hasMoreElements():)
{
string key = (Stringle.nextElement():
Integer val = (Integer)hash.get{key):
System_out .printin{ Key: ~ + key + ~ Val: = + val):
}

}
}

Ans: Yes, this will execute successfully and display sorted data on string values of hashtable.

18,5 The following code will create a String type array to perform binary search for word “Hello™. Will this code
compile successfully?
public class BinarySearchExample
|
public int bimarySearch(String[] sorted, 5tring key)
{
int first = 0;
tnt Tast = sorted.length:
while (first < last)
{
int mid = (first + last) / 2:
if (key.compareTo(sorted[mid]} < 0

last = mid;
!
else iT (key.compareTol{sorted[mid]} = 0}
{
first = mid + 1;
]
else
{
return migd;
]
)
return -(first + 1):
}
public static void main{String[] args)
I
int i=binarySearch{args. Hello™);
if(i<h)
zystem.out . printin{“Not found™);
glse
System.out . printin{ Found at “+{i+1)+" location.™);

Copyrighted material

Hidden page

Java Language
Reference

Data-declaration keywords:

byte int float char double
Loop keywords:

do while for break continue
Conditional keywords:

if else switch
Exception kevwords:

throw try catch
Structure keywords:

class extends interface implements
Access keywords:

public private protected

¢ ' f&;&gr L

T L e P L o = AL G TR L R M e ©
i acterLiterals . oo o i
[P e W SR O e -, i

Description or Excape Sequence Sequence Chatpruat
any characier ‘v’ ¥

backspace BS “ib’ back space
Horzontal tab HT i i tah

{ Continued)

Description or Escape Sequence Sequence Chuipuir

line feed LF “wn* linefeed

form feed FF G fiorm Teed

carmage retum CR b = carriage return

double guote T =

single quote o

backslash kbl [}

octal bit pattern ‘Oddd’ {octal value of ddd)

hex bit pattern ‘Oxdd’ (hex value of dd)

Unicode character “widdd" {actual Unicode character of dddd)
Operator Cperation Example

+ Addition Aty

= Subtraction =¥

. Multiplication X%y

/ Division x/y

% Modulus x %y

Operator Operation E.mmp.r’e' Heamﬂ;g
+= add to current variable Ktmy Xwx+y
-= subtract from current variable X-=y X=xX—Y
Wi multiply by current variable =y x=x*y
/= divide by current variable xl=y x=x/y
Operator Operation Example Meaning
i o increment by 1 X+ + x=x+1]
= decrement by | = x=x-1

- Equal X= -y Is x equal to v7

!= Not equal x!=y Is x not equal to y?

< Less than A<y Is x less than y7

= Greater than x>y Is x greater than y?

<= Less than or equal to X<=y 15 % less than or equal wo v7

>- Cireater than or equal 1o X>r=y Is x greater than or equal to y?

L-opyrighted materi

& Bitwise AND

| Bitwise OR

A Bitwize XOR

<< Left shift

> Right shift

>>> Zero fill right shift

- Bitwise complement

< - Lefi shift assignment

Fr= Right shift assignment
= Zero fill right shift assignment
&=y AND assignment

X|=y OR assignment

xh=y NOT assignment

Start Text End Comment

i fext */

f. text il

i text {everything 1o the end of the line iz ignored by the compiler)

Tipe Length Minimum Value Maximum Falue
byte 8 bits - 128 127

Short 16 bits - 32768 3767

Int 32 bits ~ 2147483648 2147483647

long i bits — 9223372036854775808 9223372036854775807

Copyrighted material

]

! D +

-3 < =

= & »
= np:

instanceonf
ol
o=

A simple if statement

A multiline 11 statement

The if...e2lse statement

The while statement

The do...while loop

The switch statement

if (boaleanTest)
callfunction (J:
if (booleanTest)

{

f{ setof statements

I

if {booleanTest)

{1 True block statements

)

alge

{

}
while (ooleanTest)

/! False block statements

{

/! Loop statements
}
do
{

{! Loop statéments
}
while (booleanTest)
switch (expression)
{

case FirstCase
7 First set of statements
break:

case SecondCase
i Second set of statements
break :

case ThirdCase
{{ Third set of statements
break:

default

(Continued)

Copyrighted maierial

Statement Example
{ f Default statement
break:
}
The for loop for (initialization: condition:
I nC rement) sLatement ;
Defining Classes

The basic structure of defining a class is as follows:
Scope class ClassName [extends class)

{
}

When declaring the scope of the class, we have several options to control how other classes can
access this class:
public The cluss can be used by code outside of the file. Only one class in a file may have
this scope. The file must be named with the class name followed by further four-
letter java extension.

f{ Class implementation statements

private The clazs can only be used within a file.
abstract The class cannot be used by itself and must be subclassed.
fimal The class cannot be used by a subclass.
synchronizable Instances of this class can be made arguments.,
If a scope modifier is not used, the class is only accessible within the current file.
Defining Methods

A method 1s the code that acts on data inside a class and 1s always declared inside the class declaration.
A method has the following syntax:

Scope Returniype methodName (arguments)

/! Method implementation statements

}
The scope allows the programmer o control access to methods and can be one of the following:
public The method is accessible by any system object.
protected The method is only accessible by subclasses and the class in which it is
declared.
private The method is accessible only within current class.
final The miethod cannot be overndden by any subclass.
static The method is shared by all instances of the class.

If a method is not given a scope, it is only accessible within the scope of the current file. We can also
use these scope operators when declaring varniables.

Copyrighted material

- ‘.--_- - |i I sfert
Exception Handling

An exception has two parts: signalling an exception and setting up an exception handler. To signal an
exception, use the try keyword. To set up an exception handler, we use the catch keyword. We use the
finally keyvword to specify a block of statements that will execute no matter what. To tell the system

that an error has occurred, use the throw keyword.

try
{
/' Try this block of code and throw exception
}
catch (Exception e)
{
/{ Handle error
finally
[
/I Executed no matter what happens
!

General Applet Construction

A minimal Java Applet has the following construction:
fad

* Javahpplet.java - Sample Applet

&

)

import java.applet.*;

import java.awt.Graphics;:

public class JavaApplet extends java_applet.Applet

{
public void imit ()

{ { { Called first time applet is executed

éub1ic void start ()

{ { { Called after init{) and whenever Web page is revisited
g.um ic void stop ()

{ / { Called when Web page disappears

%ublic void destroy {)

(Continued)

Copyrighted material

570 * Proarming v A Priver
(Continued)
{f Called when applet is being removed from memory

}
public void paint ({(Graphics g)
{
g.drawstring ("Goodbye 'T., 100, 100}
}

Copyrighted material

Java Keywords

This appendix lists the keywords in Java. They are grouped according to their meaning/function.

Grroup Keyword Meaning/Function
Class Organization package specifies the class in a particular source file
should belong to the named package.
import requests the named class or classes be imported
into the current application.
Class Definition interface defines global data and method signatures that can
he shared among classes.
class defines a collection of related data behaviour.
extends indicates which class o subclass,
implements indicates the interface for which a new class will
supply methods.
Keywords for Classes and Variables abstract specifies the class cannot be instantiated directly.
public means the class, method, or variable can be
accessed from anywhere,
private means only the class defining the method or
variahle can aceess it
protected means only the defining class and its subclasses
can access the method or variable,
static specifies a class method or variable,

synchronized

indicates only one object or class can access this
variable or method at a time.

(Continued)

372 * Programming it Jova: Primr
(Continued)
Group Keyword Meaning/Function
volatile tells the compiler this variable may change
asynchronously due to threads,
final mizans this variable or method cannot be changed
by subclasses.
const means this variable cannot be changed.
native links a method to native code.
Simple Data Types long is a 64-bit integer value.
int is & 32-bit integer value,
short is a 16-bit integer value.
byte is & 8-bit integer value,
double is a 64-bit floating-point value,
float is & 32-bit floating-point value.
char is a 16-bit Unicode character.
boolean is & true or false value.
void indicates a method does not return a value.
Values and Vanables false 15 a Boolean value.
true i% a Boolean value.
this refers to the current instance in an instance
method.
super refers to the immediate superclass in an instance
method.
null represents a nonexistent instance,
Exception Handling throw throws an exception
throws throws an exception.
try marks a stack so that if an exception is thrown, it
will unwind to this point.
catch caiches an exception,
finally says execute this block of code regardless of
exception ermor handling flow.
Instance Creating and Testing e creates new INSLances,
instanceof tests whether an instance derives from a particular
class or interface.
Control Flow switch iests a variable.
case execuies a particular block of code according 1o
the value tested in the switch.
default means the default block of code executes if no
matching case statement was found,
break breaks out of a particular block of code.

{ Contined)

 Aopendi B e Koywards ar3

(Continued)
Crroup Keyword Meaning/Function
continue continues with the next iteration of a loop.
goto directs control (o a specified place.
return returns from a method, optionally passing back a
value,
do performs some statement or set of stalements.
if tests for a condition and performs some action if
true.
else performs some action if the above test was false.
for signifies iteration,
while performs some action while a condition is true.

* Keywords not available from C

auto, enum, extern, register, signed., sizeof, struct, typedef, union, unsigned,

* Keywords not available from C++

delete. friend. inline. mutable. template, using. virtual.

Hidden page

n"-“_

" % & @ & @

Appendix C:

=
@ C.3 Operators

Java adds a new right shift operator > > = which inserts zeros at the top end.

The + operator can be used to concatenate strings.

Operators overloading is not possible in Java.

The , operator of C has been deleted.

Java adds another operator instanceof to identify objects.

The modulo division may be applied to float values in Java which is not permitted in C/C++,

@ C.4 Functions and Methods

All functions are defined in the body of the class. There are no independent functions.

¢ The functions defined inside a class are known as methods.
Although function overloading in Java works virtually identical to C++ function overloading,

[4

there are no default arguments to functions.
Mo inline functions in Java.

Java requires that methods with no arguments must be declared with empty parenthesis, (not
with void keyword).

C.5 Preprocessor

Java does not have a preprocessor, and as such, does not support #define or macros.
Constants can be created using the final modifier when declaring class and instance variables.
Java programs do not use header files.

r;g c.6 Classes

® % ® ® & ® ® @

Class defimitions take the similar form in Java as in C++, but there is no closing semicolon.
There is no scope resolution operator :: in Java.

No forward references of classes are necessary in Java,

Mo destructors in Java.

Java has no templates.

No nested classes in Java.

Inheritance in Java has the same effect as in C++, but the syntax is different.

Java does not provide direct support for multiple inhentance., We can accomplish multiple
inheritance by using interfaces.

Access specifiers (public, private, protected and private protected) are placed on each definition
for each member of a class.

Hidden page

T

@ C.11 Other Differences

» Java supports multithreading.

* Java sopports automatic garbage collection and makes a lot of programming problems simply
vanish.

#* The destructor function is replaced with a flinalize function.

« Exception handling in Java is different because there are no destructors. A finally clause is
always executed to perform necessary cleanup.

* Java has built-in support for comment documentation, so the source code file can also contain its
own documentation.

e —a—ame

Bit-level
Programming

D.1 Introduction

Omne of the unique features of Java language as compared to other high-level languages 15 that it allows
direct manipulation of individual bits within a word, Bit-level manipulations are used in setting a
particular bit or group of bits to 1 or 0. They are also used to perform certain numerical computations
faster. As pointed out in Chapter 5, Java supporis the following operators:

1. Bitwise logical operators

2. Birwise shift operators

3. One's complement operator

All these operators work only on integer type operands.

g D.2 Bitwise Logical Operators

There are three logical Bitwise operators. They are:
* Bitwise AND (&)
s Bitwise OR (]}
s Bitwise exclusive OR (%)
These are binary operators and require two integer-type operands. These operators work on their
operands bit by bit starting from the least significant (i.e. the nghtmost) bit, setting each bit in the result
as shown in Table D.1.

379

SRR T s el
Ml 2 e e el
opl " apl

(=]

Bitwise AND

The bitwise AND operator is represented by a single ampersand (&) and is surrounded on both sides by
integer expressions. The result of ANDing operation is | if both the bits have a value of 1; otherwise it
is 0. Let us consider two variables x and ¥ whose values are 13 and 25. The binary representation of
these two vanables are

x — 0000 0000 0000 1101
y —-» 0000 0000 0001 1001

If we execute statement

Z=x & v;
then the result would be:

z —» 0000 0000 0000 1001

Although the resulting bit pattern represents the decimal number 9, there is no apparent connection
between the decimal values of these three variables. Program D.]1 shows how to use the bitwise
Operators,
Program D.1 Demonstration of bitwise operators

Class Bitwise

{
public static wvoid main (5tring args[])
{
int a=13. b=25:
System.out printin ("a = " + a):
System.out printin (b = " + Bb).
System.out.printin ("a & b = ~ + {(a & b));
System_out.println ("a | b = ° + {(a | b)):
System_out .println {("a * b = ~ + {a * b)):
]
]
The output would be:
a = 13
b = 25
a&b=29
a | b= 29
a * b= 20

Copyrighted material

Hidden page

381

Output:

Input a number
20

Mumber 15 even
Input a number
9

Number 1is odd
Input a number
-1

Bitwise OR

The bitwise OR is represented by the symbol | (vertical bar) and is surrounded by two integer operands.
The result of OR operation is | if at least one of the bits has a value of 1; otherwise it is zero. Consider
the variables x and y discussed above.

X = 0000 Qooo0 0ooo 1101
y —s» 0000 0000 0001 1001

x|y -—= 0000 0000 0001 1101

The bitwise inclusion OR operation is often used to set a particular bit to | in a flag. Example:

Class Bitd

{
final static SET = 8-

public static void main (String args(])

{
int flag:
flag = flag | SET:
if ((flag & SET) ! = 0}
{
System.out.printin (“flag is set \n"):
!
]
}
The statement

flag = flag | SET:
causes the fourth bit of flag to set 1 if it is 0 and does not change it if it is already 1.

382

Bitwise Exclusive OR

The bitwise exclusive OR is represented by the symbol *. The result of exclusive OR is 1 if only one of
the bits is 1; otherwise it is 0. Consider again the same variables x and y discussed above.

X — 0000 0000 0000 1101
¥ — 0000 0000 0001 1001

Xy » 0000 0000 0001 1101

@ D.3 Bitwise Shift Operators

The shift operators are used to move bit patterns either to the left or to the right. The shift operators are
represented by the symbols < and > and are used in the following form:

Left shift:op << n

Right shift: op =

op 15 the integer expression that is to be shifted and n is the number of bit positions to be shifted.

The left-shift operation causes all the bits in the operand op to be shifted to the left by a positions.
The leftmost » bits in the original bit pattern will be lost and rightmost # bits positions that are vacated
will be filled with Os.

Similarly, the night-shift operation causes all the bits in the operand op to be shifted to the right by n
positions. The rightmost n bits will be lost. The leftmost n bit positions that are vacated will be filled
with zero, if the ap is a posiiive integer. If the vanable to be shified is negarive, then the operation
preserves the high-order bit of 1 and shifts only the lower 31 bits to the right.

Both the operands op and # can be constants or variables. There are two restrictions on the value of
n. It may not be negative and it may not exceed the number of bits used to represent the left operand op.

Let us suppose X is a positive integer whose bit pattern is

0100 1001 1100 1011
then,
Vacated
positions

x << 3 = 0100 1110 0101 1000
x >> 3 = 0000 1001 0011 1001

I

Vacated
positions

Shift operators are often used for multiplication and division by powers of two,
Consider the following statement:
X =y <<]:
This statement shifis one bit to the left in y and then the result is assigned to x. The decimal value of
X will be the value of v multiplied by 2. Similarly, the statement

Appart 0 Bl Procraming 583
X =y > 1:
shifts y one bit to the right and assigns the result to x. In this case, the value of x will be the value of ¥
divided by 2.

Java supports another shift operator === known as zero-fill-nght-shift operator. When dealing with
positive numbers, there is no difference between this operator and the right-shift operator. They both
shift zeros into the upper bits of a number. The difference arises when dealing with negative numbers.
MNote that negative numbers have the high-order bit set to 1. The right-shift operator preserves the high-
order bit as 1. The zero-fill-right-shift operator shifts zeros into all the upper bits, including the high-
order bit, thus making a negative number into positive. Program D.2 demonstrates the use of shift
operators.,

Program D.2 Demonstration of Shift operators

Class Shift

public static void main (5tring args[])

{
int a=8, b=-8:

System,out printin (a2 = " + a + " b = 7 + Bb).
System.out.printin ("a == 2 = " + (@ == Z)):
System.out.printin (a8 =< 1 = " + (a << 1)):
System.out.printin ("a »>> 1 = " + {3 =>> 1)}):
System.out.printin (b == 1 = ° + (b == 1)}):
System.out.printin (b === 1 = " + (b ==>])):
}
}
The output would be:
a=48 b = -8
a == ¢ = &
a << 1 = 16
a ==] - 4
b=] = -4
b ===] - 2147483644

65
53 D.4 Bitwise Complement Operators

The complement operator ~ (also called the one’s complement operator) is an unary operator and
inverts all the bits represented by its operand. That is, 0s become 15 and 15 become zero. Example:
X = 1001 0110 1100 1011
~x = 0110 1001 0011 0100
This operator is often combined with the bitwise AND operator to turn off a particular bit. For
example, the statements
X = B; f* 0000 QOO0 00000 1000 */
flag = flag & -x:
would turn off the fourth bit in the vanable flag.

Java API Packages

Java API is implemented as packages, which contain groups of related classes. Along with classes,
they also include interfaces, exception definitions and error definitions. Java APl is composed of a
large number of packages. The most commonly used packages are:

Stand-alone Application Programming

l. java.lang
2. java.util
3. java.io

Applet and Network Programming

4. java.awt
5. java.applet
6. java.net
This :ppend.u lists the frequently used interfaces and classes contained in the above pi:hgﬂ..
-\.r T "I' - :u:g-bﬁ -IE':# B] . -
ol o i s i
Interfaces

Cloneable Interface indicating that an object may be copied or cloned
Runnable Methods for classes that want to run as threads
Classes
Boolean Ohbject wrapper for boolean values
Byte Ohbject wrapper for byte values

(Continued)

Table E.1 (Continued)

Character
Class
ClassLoader
Compiler
Double
Float
Integer
Long
Math
Number

b ject
Process

Runt ime
securityManager
String
StringBuffer
System

Thread
ThreadDeath
ThreadGroup
Throwable

Object wrapper for char values

Run-time representations of classes

Abstract behaviour for handling loading of classes

System class that gives access to the Java compiler

Object wrapper for double values

Object wrapper for float values

Object wrapper for inf values

Object wrapper for long values

LUtility class for math operations

Ahbstract superclass of all number classes (Integer, Float, and so on)
Gieneric object class, at top of inheritance hierarchy

Abstract behaviour for processes such as those spawned using methods in the
System class *

Access to the Java runtime

Abstract behaviour for implementing security policies

Character strings

Mutable strings

Access 1o Java's system-level behaviour, provided in a platform independent way
Methods for managing threads and classes that run in threads
Class of object thrown when a thread is asynchronously terminated
A group of threads

Generic exception class; all objects thrown must be a Throwable.

Interfaces

Enumeration Methods for enumerating sets of values
Observer Methods for enabling classes to be Observable objects
Classes

BitSet A set of bils

Date The current system date, as well as methods for generating and parsing dates

Dictionary An abstract class that maps between keys and values (superclass of HashTable)

Hashtable A hash table

Observable An abstract class for observable objects

Properties A hash table that contains behaviour for setting and retrieving persistent
properties of the system or a class

Randam Utilities for generating random numbsers

Stack A stack (a last-in-first-out queue)

StringTokenizer Utilities for splitting strings into individual “token™

Vector A growable amay of Objects

FileDescriptor
Filelnput5Stream
FileQutputitream
FilterInputStream

FilterOutputStream
Input Stream

LineNumberInputStream
OutputStream

PipedinputStream
PipedOutputsitream
PrintStream

PushbackInputStream
RandomAccessFile

SequencelnputStream
Streamlokenizer

StringBufferinputStream

Interfaces
Datalnput Methods for reading machine-independent typed input streams
Datalutput Methods for writing machine-independent typed output streams
FilenameFilter Methods for filtering file names
Classes
BufferedInputStream A buffered input stream
Bufferealutputstream A buffered output stream
ByteArrayInput3tream An input stream from a byte armay
BytedrrayQutputStream An output stream to a byle amay
DatalnputStream Enables you to read primitive Java types (ints, chars, booleans, and so
omn) from d stream in a machine-independent way
DataQutputStream Enables you to write primitive Java data types (ints, chars, booleans,
and so on) o a stream in a4 machine-component way
File Represents a file on the host's file system

Holds onto the UNIX-like file descriptor of a file or socket

An input stream from a file, constructed using a filename of descriptor
An output stream to a file, constructed using a filename or descriptor
Abstract class which provides a filter for input streams (and for adding
stream functionality such as buffering) _
Abstract class which provides a filter for output streams (and for adding
stream functionality such as buffering)

An abstract class representing an input stream of bytes; the parent of all
input streams in this package

An input stream that keeps track of line numbers

An abstract class representing an oufput stream of byies; the parent of
all output stream in this package

A piped input stream, which should be connected 1o a
PipedOutputStream to be useful

A piped output stream, which should be connected 1o a
PipedInpuiStream to be useful (together they provide safe
communication between threads)

An output stream for printing (used by System.out.printing...))

An input stream with a 1-byte push back buffer

Provides random access (o a file, constructed from filenames,
descriptors or objects

Converts a sequence of input streams into a single input siream
Converts an input stream into a series of individual tokens

An input stream from a String object

Copyrighted maierial

Hidden page

Table E.4 (Continued)

MediaTracker A way o keep track of the status of media objects being loaded over the Net

Menu A menu, which can contain menu items and is a container on 4 menubar

HMenubar A menubar (container for menus)

MenuComponent The abstract superclass of all menu elements

Menultem An individual menu item

Panel A container that is displayed

Paint An object representing a point (x and y coordinates)

Polygon An object representing a set of points

Rectangle An object representing a rectangle (x and v coordinates for the top comer,
plus width and height)

scrollbar A Ul scrollbar object

TextArea A multilane, scrollable, editable text field

TextComponent The supeclass of all editable text components

TextField A fixed-size editable text field

Toolkit Abstract behaviour for binding the absiract AWT classes 1o a platform-
specific ioolkit implemeniation

Window A top-level window, and the superclass of the Frame and Dialog classes

Interfaces
ImageConsumer Methods for receiving image created by an ImageProducer
Imagelbserver Methods to track the loading and construction of an image
ImageProducer Methods for producing image data received by an ImageConsumer
Classex
ColorModel An abstract class for managing color information for images
CropImageFilter A filter for cropping images to a particular size
DirectColorMode] A specific color model for managing and translating pixel color values
FilteredImageSource An ImageProducer that takes an image and an ImageFilter object, and
produces an image for an ImageConsumer
Imagefilter A filter that takes image data from an [mageProducer, modifies it in some
way, and hands it off 0 an ImageConsumer
IndexColorModel A specific color model for managing and translating color values in a
fixed-color map
Memory ImageSource An image producer that gets its image from memory; used after
constructing an image by hand
PixelGrabber An ImageConsumer that retrieves a subset of the pixels in an image
RGE ImageFilter Abstract behavior for a filter that modifies the RGB values of pixels in RGB

Images

Copyrighted material

AppletContext

Methods to refer to applet’s context

AppletStub Methods to implement applet viewers
AudioClip Methods to play audio files

Classes
Applet The base applet class

ContentHandler Factory
SocketImplFactory

ELStreamHandlerFactory

Methods for creating ContentHandler objects

Methods for creating socket implementations {instance of the
Socketlmpl class)

Methods for creating URLStreamHandler objects

Classes

ContentHandler Abstract behaviour for reading data from a URL connection and
constructing the appropriate local object, based on MIME types

DatagramPacket A datagram packet (UDP)

Datagramsocket A datagram socket

InetAddress An object representation of an Internet host (host name, [P address)

serversocket A sever-side socket

Socket A socket

SocketImpl An abstract class for specific socket implementations

URL An object representation of a URI

URLConnection Abstract behaviour for a socket that can handle various Web-based
pratocols (hitp, fip, and so on)

URL Encoder Tums strings into x-www-form-urlencoded format

URLStreamHandler Abstract class for managing streams to object referenced by URLs

Copyrighted maierial

I ———

EC=""4
‘éj Java Classes and
Their Packages

This appendix lists the frequently used classes in alphabetical order and indicates in which package a
given class is defined. It also lists the classes that extend them.

Class Package Subclasses
AbstractMethodErmor java.lang Nil
AppletContext java.applet Mil
AppletStub java.applet Nil
Applet java.applet Mil
ArithmeticException java.lang Nil
ArrayIndexOutofBoundsException java,lang Mil
ArmayStoreException java.lang Nil
AudioClip java.applet Nil
AWTErmar Java.awt Mil
AWTException Java.awt - Nil
BitSet java.util Nil
Boolean java.lang Nil
BorderLayout Java,awt Mil
BufferedinputStream java.io Nil
BufferedOutputStream java.io Nil

{Continued)

 Appendix F: Java Classes and Their Packages. 391

(Continued)

Class Package Subclasses

ButtonPeer Jjava.awt.peer Nil

Button Java.awt il

ByteArrayInputStream java.io Nil

ByteArmayOutputStream Java.io Mil

CanvasPeer java.awt peer Nil

Canvas java.awt Mil

CardLayout Java. awt Nil

Character Jjava,lang il

CheckboxGroup Java.awt Nil

CheckboxMenultemPeer java . awt _peer Nil

CheckboxMenultem Java.awt Mil

CheckboxPeer Jjava.awk peer Mil

Checkbox Jjava.awt Mil

ChoicePeer Jjava.awt peer Mil

Chioice java . awt Mil

ClassCastException java.lang Mil

ClassCircularityError java.lang Nil

ClassFormatEmor Java.lang Nil

ClassLoader Jjava.lang Mil

ClassMotFoundException java, lang Mil

Class java.lang Nil

Cloneable Java.lang Mil

CloneNotSupportedException java.lang Nil

ColorModel Jjava.awt . image DirectColorModel,
IndexColorModel

Color java.awt Mil

Compiler java.lang Nil

ComponentPeer Java.awt . peer ButtonPeer, CanvasPeer,
CheckboxPeer, ChoicePeer
ContainerPeer, LabelPeer,
ListPeer, ScrollbarPeer,
TextComponentPeer

Component Java.awt Button, Canvas, Checkbox, Choice,
Container, Lable, List, Scrollbar,
TexiComponent

{ Continued)

{ Continued)

Class Package Subclasses

ContainerPeer Java.awt peer PanelPeer, WindowPeer

Container Jjava . awt Panel, Window

ContentHandlerFactory java.net Nil

ContentHandler java.net Nil

CroplmageFilter java.awt . image Nil

DatagramPacket Jjava.net Nil

DatagramSocket Jjava_net il

DatalnputStream java.io Nil

Datalnput java.io Nil

DataOutputSiream Jjava.iop Nil

DataCutput java.io Nil

Date Java_util Nil

DialogPeer java.awt peer FileDialogPeer

Dialog Java.awt FileDialog

Dictionary Jjava.util Hashtable

Dimension java. awt Nil

DirectColorModel Jjava.awt, image Nil

Double java.lang Nil

EmptyStackException Java.util Nil

Enumeration java.util Nil

EOFException Java.io Nil

Error java.lang AWTError, LinkageErmor,
ThreadDeath, VirualMachineErmor

Event Java.awt Nil

Exception jawa.lang AWTException,
ClassMotFoundException,
CloneNotSupportedException,
lllegal AccessException,
InstantiationException,
InterruptedException,
IOException,
NoSuchMethod Exception
RuntimeE .

FileDescripior java.io Nil

FileDialogPeer Jjava.awt peer Mil

(Continued)

Copyrighted material

{ Contimied)

Class Package Subclasses

FileDialog Java.awt Nil

FilelnputStream java.io Nil

FilenameFilter java.io Nil

FileNotFoundException java.io Nil

FileOutputStream Jjava.io Mil

File java.io Nil

FilteredimageSource Java.awt , image Mil

FilterinputStream java.io BufferedInputStream,
DatalnputStream,
LineNumberlnputStream,
PushbackinputStream
BufferedOutputStrearm,
DataOutpuiStream, Print Stream

Float Java.io Nil

FlowLayout Java.awt Nil

FontMetrics java.awt Nl

Font java.awt Nil

FramePeer java.awt peer Nil

Frame Java. awt Mil

Graphics java.awt Mil

GridBagConstraints java.awt Nil

GridBagLayout Java.awt Nil

GrdLayout Jjava. awt Wil

Hashtable java.util Properties

Ilegal AccessEmor java.lang Nil

Illegal AccessException Java.lang Nil

lllegal ArgumentException Java.lang Illegal ThreadStateException,
NumberFormatException

IlegalMonitorSwateException java.lang Nil

Illegal ThreadStateException Java.lang Nil

ImageConsumer Java. awl, image Nil

ImageFilter java. awt . image CroplmageFiler, RGBImageFilier

ImageCbserver Java.awtl . Tmage Mil

ImageProducer Java.awt image Nil

Image Java.awt Nil

(Continued)

Copyrighted maierial

Hidden page

Appendix F: Java Classes and Their Packages 305

{Continued)

Class Package Subclasses

LineNumberlnputStream java.io Nil

LinkageError Java.lang ClazsCircularityError
ClassFormatError,
IncompatibleC lassChange
Error, UnsatisfiedLinkError,
VenfyErmor

ListPecr java.awt.peer Mil

ListPeer java,awt Mil

Long java.lang Nil

MalformedURLException Java.net Nil

Math Jjava.lang Mil

MediaTracker Jjava.awt Mil

MemorylmageSource Java.awt . image Wil

MenuBarPeer java.awt peer Mil

MenuBar Jjava.awt Mil

MenuComponentPeer Jjava. awt . peer CheckboxMenuliemPeer,
MenuPeer

MenuComponent Jjava.awt MenuBar, Menultem

MenuContainer Jjava.awt Nil

MenultemPeer Java.awt peer CheckboxMenultemPeer,
MenuPeer

Menultem Jjava,awt CheckboxMenultem, Menu

MenuPeer java.awt peer Mil

Menu Jjava.awt Nil

Negative ArraySizeException Java.lang Nil

NoClassDefFoundErmor Java. lang Nil

NoSuchElementException Java.util Nil

NoSuchFieldError java.lang Nil

MoSuchMethodError java.lang Nil

NoSuchMethodException java.lang Mil

HullPoimnterException Jjava.lamg Mil

NumberFormatException java.lang Nil

Number Jjava.lang Double, Float, Integer, Long

Object Jjava,lang BitSet, Boolean, BorderLayout,
CardLayout, Character,

(Continued)

Copyrighted material

(Continued)

Class

Subclasses

OO fMemoryEmmor
OutputStream

PanelPeer
Panel

java.
Java.
Java

java.

java.
java,

util
util
lang
io

awl . peer
awt

CheckboxCiroup, Class,
ClassLoader, Color, ColorModel,
Compiler, Component,
ContentHandler, DatagramPacket,
DatagramSocket, Date, Dictionary,
Dimension, Event, File,
FileDescriptor,
FilteredimageSource, FlowLayout,
Font, FoniMetrics, Graphics,
GridBagConstraints
GridBagLayout, GridLayout,
Image, ImageFilter, InctAddress,
InputStream, Insets, Math,
MediaTracker,
MemorylmageSource,
MenuComponent, Number,
Observable, OutputStream,
PixelGrabber, Point, Polvgon,
Process, Random,
RandomAccessFile, Rectangle,
Runtime, SecuntyManager,
ServerSocket, Socket, Socketlmpl,
Stream Tokenizer, String,
StringBuffer, String Tokenizer,
System, Thread, ThreadGroup,
Thorwable, Teolkit, LIRL,
URLConnection, URLEncoder,
URLSwreamHandler, Vector

wil

Nil

Nil

ByteArmayCutpul Siream,
FileOutputStream,
FilterOutputStream,
PipedOutputStream,

Nil

Applet

{ Continued)

Copyrighted material

397

{ Cortimued)

Class Package Subclasses

PipedinputStream java.iao il

PipedOutputStream Java.io Nil

PixelGrabber Jjava . awt . image Mil

Point Java . awt Nil

Polygon java. awt Nil

PrintStream java.io Nil

Process java.lang Nil

Propertics java.util Nil

Protocol Exception java,net Mil

PushbackInputStream java.io Nil

RandomAccessFile java.io Nil

Random java.util Nil

Rectangle Jav. awt Nil

RGBImageFilter java.awt image Mil

Runnable java.lang Nil

RuntimeException jawva.lang ArithmeticException,
ArrayStoreException,
ClassCastException,
EmptyStack Exception,
lllegal ArgumentException,
IllegalMonitorStateException,
IndexCutOfBoundsException,
NegativeArmaySizeException,
NoSuchElememtException,
NullPointerException,
SecurityException

Runtime java.lang Nil

ScrollbarPeer java.awt . peer Nil

Scrollbar java.awt Nil

SecurityException Jjava.lang Nil

SecurityManager Java.lang il

SequencelnpulStream Java.io il

ServerSocket Java.met Nil

SocketException Jjava.net Nil

SocketlmplFactory Java_net Nil

SocketimplFactory java.net Nil

{Continued)

Copyrighted material

Hidden page

What’s New in
Java 1.1 and Java 2

@ G.1 Introduction

Java is the most important advance in the programming technology invented during the last decade of
the 20th century. Java technology is still evolving and is likely to be the primary programming language
of the next millennium.

Java technology has many facets that work together to get the job done. Java environment basically
consists of the following three entities:

* The language itself

A class library (Application Program Interface (API) packages)
* A set of development tools.

Sun Microsystems, the inventors of Java, calls these three entities put together as Java Development

Kit (JDK). Thus means that the JDK contains everything we need for developing Java programs. The
new versions of Java are released as JDK versions by Sun Microsystems. That is, version JDK x.v

means version Java x.y and vice versa.

Since the release of the original version of Java (known as Java 1.0) in May 1995, Sun Microsystems
has been regularly releasing updates (changes and enhancements) of Java systems. Java 1.1 was
released in March 1997 and Java 1.2 in early 1998. Fortunately, most of the changes and enhancements
are related to the APl packages and tools and very little changes have been introduced in the language
itself. In early 1999, the Java 1.2 was renamed as Java 2 by Sun Microsystems and therefore, JDK 1.2,
Java 1.2, and Java 2 all refer to the same thing.

The core APl packages that contain numerous classes and interfaces have grown from around 200 in
version 1.0 to more than 1500 in version 2. Table (.1 summanzes the core API packages available in

Java 2 and their functions. The table shows not only the packages added during the stages 1.1 and 2 but
also the number of classes and interfaces added to the various existing packages at these stages. These
packages together contain more than 1500 classes and interface and define more than 13,000 methods.
It is beyond the scope of this book to provide a complete description of all these classed and methods.
{For more details, readers may refer to the JDk 1.2 documentation available in one of the Sun web sites
or refer to the book Java Developers Almanac 1998, Patrick Chan, Addison Wesley). More statistics off

Java packages are given in Appendix [.

e Pt SR
LY First Total Classes
No. Package Added and Interfaces Task/Function
Lo Lr 2
1. java.applet 1.0 4 4 4 Provides basic functionality needed 1o
implement applets.
2.)ava.awtl 1.0 46 61 TR Provides the standard GUT controls as well as
drawing, printing and other capabilities
3. java.awt. 2 - - 13 Supports the use of assistive technologies for
accessability disabled users.
4. Java.awtl.color 2 - - 7 Supports the ability 1o work with different
color models.
5. Java.awt, 1.1 - h f Supports clipboard operations, for transfemng
data between applications.
6. Jjawa.awt dnd 2 - - 17 Supports drag-and-drop operations.
7. java.awt.dnd, 2 S = 3 Provides capability to access platform-—
peer dependent drag-and-drop facilities,
B. Jjava.awt.event 1.1 - 3 33 Provides foundation for processing events
fired by AWT components.
9. java.awt. font 2 - - 15 Provides support for advanced font
capabilities,
10, Jjava.awt.geam 2 - - 1 Supports standard geometrical objects and
transformations, in 200
Il java.awt.im 2 - - 3 Supports the Input Method AP for
12. java.awt.image 1.0 12 14 52 A Java 2D API package that supports image
Processing,
13, java.awt.image. 2 - - b Supports image compression.
codec
4. java.awt.image. 2 - - 7 Suppons functions for producing rendering-
renderable independent images,
15. java.awt.peer 1.0 22 2T 26 Provides support for inferfacing with the
underlying window system.

{ Continwed)

Copyrighted material

Hidden page

402 Programming with Java: A Primer -
Table G.1 (Continuwed)
Stage
St First Total Classes
No. Package Added and Interfaces Task/Function
ia rr 2

35. java.lang.reflect 1.1 - 7T 9 Provides capability to obtain reflective
information about classes, and objects.

36. java.math 1.1 - 2 2 Provides capability to perform arbitrary-
precision arithmetic.

37. java.net 1.0 19 26 32 Supports features fior network programming,

38. java.rmi 1.1 - 19 20 Provides capability to access objects on remote
COmputers.

39, java.rmi.activation 2 = - 16 Supports persistent object reference and
remote object activation.

40. java.rmi.dgc I.1 - 3 3 Supports functions for distributed garbage
collection.

41. java.rmi.registry 1.1 - 3 3 Supports distributed registry operations,

42, java.rmi. server i.1 - 23 24 Provides capabilities for supporting the server
side of RML.

43, java.security 1.1 - 26 57 Provides basic foundation for the Security
APL

44, java.security.acl 1.1 - 8 B Provides capabality for implementing security
poCess controls,

45, java.security.cert 2 - - 12 Provides support for parsing and managing
digital certifications.

46. java.security 1.1 - 5 5 Supports implementation of the NIST digital

interfaces signature of algorithm.

47, java.security. spec 2 - - i} Provides specification for cryptographic keys

48, java.sql 1.1 - 17 24 Provides support for the Java database
connectivity,

49. java.text 1.1 - 19 28 Provides support for intemationalization of
text and messages.

50. java.util 1.0 14 26 49 Supporis a variely of common programming
needs.

§1. java.util.jar 2 - - E Provides support for working with JAR (Java
Archive) files,

52. java.util.mime 2 - - 3 Provides capability to work with MIME type
objects,

§3. java.util.zip 1.1 = iIT 17 Provides support for working with compressed
files.

54. org.omg.CORBA 2 - - 14 Implements the foundation for supporting

Java-CORBA integration.

{Continued)

 Appsidix G: Whet's New in Java 1.1 and Java 2 403

Table G.1 (Conrinued)

Stage
50 : First Towal Classex
No. Package Added and Interfaces Task/Function
' ia LI 2
55. org.omg.CORBA. 2 - ~ I Describes a CORBA object in a CORBA
ContainedPackage container.
56, org.omg. CORBA . 2 - - 1 Describes a CORBA container object.
ContatnerPackage
57. org.omg.CORBA. 2 - - 1 Describes a CORBA interface definition,
InterfacelDefPackage
58. org.omg.CORBA. 2 - = 1 Raises an exception when an invalid name is
ORBPackage passed 10 an object request broker.
59. org.omg.CORBA. 2 - - 2 Signals exceptions related to type usage and
Cconsiraints,
60, org.omg.CORBA . 2 - - 5 Supports vender-specific CORBA
partable implementation.
6l. org.omg.CosNaming 2 - - Implements a tree-structured data type naming.
62, org.omg.LosNaming. 2 - - |8 Implements nodes within the tree-structured
NamingContextPackage naming scheme.

G.2 Changes in Java 1.1
As pointed out earlier, the updates include five kinds of changes:

. Additions to the existing packages

2. Addition to new packages

3. Changes in the existing classes and members
4. Changes in the language itself

5. Changes n tools

Addition to the Existing Packages
Additions to the existing packages may include two things:
1. New classes in the existing packages
2. New members (ficlds, constructors, and methods) in the existing classes

As seen from Table G.1, new classes have been added to all the classes except Applet class,
Similarly, a comparison of Tables 1.2 and .3 shows that new members have been added to many classes
in almost all the existing packages. All these additions are aimed at enhancing the functionality of the
existing APl. Some important enhancements are listed as follows:

Abstract Windowing Toolkit (AWT) Enhancements The additions have improved the
functionality of AWT to make the large-scale GUI development more feasible. Java 1.1 supports

404 Programming with Java: A Primer
delegation-based event handling, data transfer such as cut-copy-paste, desktop color schemes, printing,

mouseless operation, faster scrolling, popup menus and much more. These improvements have made
Java 1.1 faster than Java 1.0.

YO Enhancements Java 1.] has added character streams to the existing java.io package. These
are like byte streams of Java 1.0 except that they operate on 16-bit Unicode characters rather than
eight-bit bytes. Character streams make it easy to write programs that are independent of the user’s
culture and language and therefore easier to write “global programs”™. The process of writing a global
program and ensuring that it can be used without change by anyone in the world is known as
internationalization. In addition, two byte sireams were added to support object serialization.

Serialization lets us store objects and handle them with binary input/output streams.

Networking Enhancements The 1.1 release made several enhancements to the networking
package, java.net. It supports selected BSD-style options in the base classes and provides facility for
finer granularity in reporting and handling network errors.

Native Methods Interface WNative methods are written in languages other than Java. The native
methods interface from 1.0 has been completely rewnitten and formalhized. This interface 1s now known
as the Java Native Interface (JNI). This provides capability for Java objects to access native methods.

Addition of New Packages
Java 1.1 has added the following new packages to provide new capabilities.

l. java.awt.datatransfer 9. java.rmi.server

2. Java.awt event 10. jJava, security

3, java.beans 11. java.security.acl

4, java.lang.reflect 12. java.security.interfaces
5. java.math 13. java.sql

f. java.rmi 14, java.text

7. java.rmi.dgc 15. java.util.zip

. java.rmi.registry

Some major new capabilities are discussed as follows:

Security and Signed Applets Java 1.1 supports the developments of digitally signed Java

applications. It provides capability for key management, certificate management and security access
controls.

Java Archive Files Java Archive (JAR) files introduced in version 1.1 provide the capability for
storing a number of files together by zipping them to shrink them, so the user can download many files
at once. JAR files help us orgamize applets, apphcations, beans, and class hibraries and support more
efficient use of network resources.

JavaBeans Architecture The new JavaBeans architecture provides specifications that describe
Java objects suitable for reuse. The JavaBeans APl allows third-party software vendors to create and
ship reusable components (known as Beans), such as text, spreadsheets, graphic widgets, etc., that can
be used by non-programmers to build applications.

BN Ny i oy 1,100 Jave 2 408

Math Package The new package java.math added to Java 1.1 contains two classes, Biglnteger
and BigDecimal. They provide support for performing arithmetic and bit manipulation on arbitrary
precision decimal and integer numbers, without causing overflow or loss of precision.

Remote Method Invocation {RMI) BRMI AP, introduced in 1.1, provides capability to create
distributed Java-to-Java applications. Java objects in a local computer can invoke the methods of
objects on a remote computer. The concept of object senalization is used to pass objects as parameters
and return values in the remote method invocations.

Reflection Reflection means identification of fields, constructors and methods of loaded classes
and objects and using this information at runtime. These capabilities are used by Java Beans, object
inspection tools, debuggers, and other Java applications and applets.

Java Database Connectivity (JDBC) JDBC capability is provided by the package java.sql.
This provides a uniform access to a wide range of relational databases from Java,

Changes in the Existing Classes and Methods

Many classes and methods have undergone changes from 1.0 to 1.1. Changes may be:
New members in the existing classes

Deprecation of classes

Deprecation of methods

Removal of classes

Removal of methods

Maodification of design of classes

. Modification of definition of methods

A complete description of all these changes is beyond the scope of this appendix. A brief description
of classes and methods that have been deprecated or removed is given in Appendix H.

Bl L ol i

Changes in Language Itself

Changes in language itself were very minor. Bytes and shorts are accommodated as wrapped numbers
by adding new classes Byte and Short. The abstract class Number gets two new concrete methods
byteValue and shortValue.

A new class Void has been added as an uninstantiable place holder.

Inner Classes One important change to the Java 1.1 is the ability to define classes as members of
other classes. Such classes are called nested classes. Inner classes are one type of nested classes.

Instance Initializers lava 1.0 supported initialization of only static variables (also known as class
variables). Example:

class TestClass
{

‘static {

....... {{ Initialization code

406 | '
3 2}

Java 1.1 permits initialization of instance vanables as well. Example:

class TestClass
i

&

------- [Initialization code

Array Initialization Java 1.1 permits initialization of an array content in a new statement. For
example, the following code creates an array of strings:

string [] city = new String [1 {
“Madras”
"Delhi”
“Bombay”~ |}

New Uses for Final Java 1.1 allows us to declare the method parameters and local variables as
final. However, a subclass can override a method and add or drop any final parameter modifiers. We
can also deter initialization of a final variable, as long as we initialize it before it is used and assign a
value to it exactly once.

-
]

‘ G.3 Changes in Java 2

Java 2 is a major upgrade of the core APl and adds a standard extension architecture. Again the changes
may be classified as follows:

1. Additions to the existing packages (Enhancements)

2. Adding new packages (New capabilities)

3. Changes in the existing class and methods

4. Changes in the language

5. Changes in tools

Enhancements in Java 2

Capabilities of java has been considerably enhanced by adding new classes to the existing packages as
well as new members to almost all the existing classes. A comparison of Tables 1.3 and 1.4 (see
Appendix I) will reveal this.

Security Enhancement Java 2 provides users with the capability to specify security policies
simply by editing the security permissions stored in their policy text files. Unless a permission is
explicitly specified to code, it cannot access the resource that 15 guarded by that permission.

Java Beans Enhancement Java 2 provides facilitics to create more sophisticated JavaBeans

components and applications. It provides capability to incorporate with other Beans and to leamn
information about their execution environment.

Hidden page

R

Swing Swing is the code word used by the JavaSofi team for the improved AWT. Swing implements
a new set of GUT components with a “pluggable™ look and feel, Swing 15 implemented completely in
Java. Pluggable look and feel architecture allows us to design a single set of GUI components that can
automatically have the look and feel nfnn:,.- 08 platfnm'l.

Java 2D The new Java 21 APl includes a set of tools for dealing with two-dimensional drawings
and images. These include provision for colorspaces, text, line art and printing.

Accessibility Accessibility APl provides support for the use of assistive rechnologies, such as
screen magnifiers, speech recognition systems, and Braile terminals intended for use by disabled users.

Drag and Drop Drag and Drop capability of Java 2 facilitates data transfer across Java and native
applications, between Java applications, and within a single application,

Java IDL Java IDL in Java 2 provides a set of tools for interfacing Java objects with CORBA
{Common Object Request Broker Architecture) objects and for developing CORBA objects in Java. It
also includes a Java ORB (Object Request Broker) and an ORB name server.

Collections The Collections APl provides an implementation-independent framework for working
with collection of objects such as sets, maps, lists, and linked lists.

Package Version Identification A new capability of Java 2 allows applets and applications to
obtain version information about a particular Java package at runtime.

Reference Objects Reference objects (introduced in version 2) stores references to other objects.
This feature can be used to implement object-catching mechanisms.

Input Method APl The new Input Method APl provides support for Java's internationalisation,
This enables all text-editing components to receive foreign language text input through input methods.
It currently supports Japanese, Chinese and Korean languages.

Language Changes

There are not major changes in language. Only three methods of Thread class, stop(), suspend(), and
resume{) have been depreciated because of ermors and inconsistencies caused by them. Instead of
using the stop{) method, it is proposed that a thread may monitor the state of a shared vanable and stop
execution by returming from s run{) method. Similarly, a thread may suspend and resume its
execution based on the value of shares vanables (by monitoring interface events).

Tools Changes

Java 2 has improved the tools available in the earlier versions and also added new tools. The javakey

tool of 1.1 has been replaced by the new kevtool and javasinger tools. The Java 2 now includes the
following tools:

* keytool for maintaining a database of key pairs and digital certificates.

* javasinger for signing JAR files and verifying the signatures of signed files.

* policytool for creating and modifying the files that define security policy.

« tnameserv for implementing CORBA Common Object Services (COS) Naming Service.
» rmid for remote activation system dacmon.

Hidden page

Deprecated Classes
and Methods

f-g H.1 Introduction

As a part of the effort to enhance the performance and capabilities of the Java language, Sun
Microsystems has altered and eliminated many classes and methods during upgradations. The altered
methods have been added as new methods and the older ones have been retained in order to maintain
backward compatibility with older versions of Java. However, the older methods have been marked
“deprecated”.

A deprecated method means that it has lost its importance and likely to be phased out of future Java
versions. Although programs that use deprecated methods will still compile and work, the compiler
will generate waming messages, [t is recommended that programs be modified to eliminate the use of
any deprecated methods and classes due to two reasons.

1. Modified programs will retain compatibility with future releases of Java.
2. Many new methods provide better implementations and therefore make programs faster and
more efficient.

i,

' H.2 Deprecated Classes and Methods of Version 1.0

A large number of classes and methods of version 1.0 have been declared deprecated. This appendix
gives package-wise tables (Tables H.1 to H.4) that list class-wise methods that have been declared
deprecated in Java 1_1. Tables also indicate alternative replacements. Table H.5 gives a list of version
1.0 classes that have been declared deprecated totally.

Hidden page

Hidden page

Hidden page

414

TR A A Prinr

Table H4 (Continued)

Classes

Methods

Replacement

preferredSize ()
minimmSize (int)
minimumSize {)
delltems (int, int)

Menucount Items ()

MenuBar
MenuComponent
Menul tem

Polygon

Rectangle

scrollbar

gcrol 1Pane
TextArea

TextFiald

Window

countMenus {)

getPeer [)

enable ()

enable (boolean)

disable ()
getBoundingBox {)
inside (int. int)
reshape (int. int. int. int)
move (imt, int)

resize (int, int)
inside (imt. int)
getVisible ()
setLinelncrement (int v)
getlinelncrement ()
setPagelncrement (int v}
getPagelncrement ()
layout {)

insertText (String. int)
dppendText (5tring)
replaceText (String. int. int)
preferredsize (int, int)
preferredSize {)
minimmsize (int. int)
minimmsize ()
setEchoCharacter (char)
preferredSize (int)
preferredsize ()
minimmiize (int)
minimmsize ()
nextFocus (Component)
postEvent (Event)

getPreferredSize {)

getMinimumSize (int)

getMinimumSize ()

Not for public use in the future, This method 15
expected to be retained only as a package
private method.

getItemCount ()

getMenuCount {)

None

setEnabled (boolean)
setEnabled (boolean)
setEnabled (boolean)
getBounds ()

contains (imt, imt)
setBounds (int, int, int, int}
setLocation (int. int)
setSize (int. int)
contains (int, int)
getVisiblefmount ()
setUnitIncrement (int)
getlnitIncrement ()
setBlock Increment (int)
getBlock Increment {)
dolLayout {)

insert (5tring, int)
append (5tring)
replaceRamge (String, int. int)
getPreferredsize (int, int)
getPreferredSize ()
getMinimumsize (int, int)
getMinimumbize ()
SetEchochar (char)
GetPreferredSize (int)
getPreferredSize ()
GetMintmumSize (int)
GetMinimmsize ()
Transferfocus (Component)
DispatchEvent (AWTEvent)

Copyrighted material

| Anponc H Copina gt doct Muthods L

Table H.5 List of Deprecated 1.0 Methods in Java.net

Classes Methods Replacement

Locket Socket (String, int, boolean) Use DatagramSocket's constructons
Socket (inetAddress. int, Use DatagramSocket's constructors
boolean)

EventlListener java.util
EventObject java.util
LineNumber [nputStream java.ip
PrintStream java.io
Serializable java.io
StringBuf fer Input3tream java.io

& H.3 Deprecated Classes and Members of Version 1.1

Some of the classes and members of version 1.1 have been removed or declared deprecated in version
2. They are summarized in Tables H.7 and H.8.

java.awt Frame CROSSHAIR_CURSOR
DEFAULT_CURSDR
E_RESIZE_CURSOR
HAND _CURSOR
MOVE_CURSOR
N_RESTZE_CURSOR
NE_RESIZE_CURSOR
NW_RESIZE_CURSOR
5_RESIZE CURSOR
SE_RESIZE CURSOR
SW_RESIZE CURSOR
TEXT CURSOR
W_RESIZE_CURSOR
WATT_CURSOR

java . awt . image BufferedImage getGraphics ()

java. awt List addltem)
delltem ()

{Continwed)

Copyrighted material

Hidden page

Hidden page

Hidden page

Appendix

Statistics of Java
Packages

iy t..iu- va fr .
Class and Interfuces Members

Java Packages Classes [Imierfaces Total Fields Constructor Methods Toral
Fersion

1.0 8 172 40 212 261 e 1545 2135
1.1 3 k2| 13 504 926 701 3851 5478
2 62 1287 305 1592 3107 2005 13635 IRR3T

Table 1.2 Contents of Java 1.0 Packages

Package Claxses fnierfaces Total Members
Jjava.applet I 3 3B
java.awt Er 2 740
java.awt , image 9 3 124
java.awt . peer 0 .7 hE
java,io 28 3 40
java. lang 62 2 505
java.net i6 3 148
java.util 12 2 146

-

i A e A

R i

Package Classes Interfaces
java.applet ! 3 »
java.awt b2 7 1317
java.awt datatransfer 4 2 29
Java . awt event 19 11 304
java.awt, image 11 3 155
Java.awl peer 0 27 17
Jjava.beans 17 6 147
java.io 6l 8 645
java.lang 67 2 G0
java.lang._reflect [1 o8
java.math 2 0)
Jjava . net 2 4 254
Java.rmi 18 1 68
java.rmi.dgc 2 l 10
Jjava.rmi.registry 1 2 13
java.rmi,server 16 7 i
Jjava. security 21 5 158
java.security.acl 3 5 30
Jjava.security . interfaces 0 5 B
java.sql 9 L] 41
java.text 18 | 315
java.util 23 3 355
java.util, zip 16 1 151

'|.."'*l‘25$' -

Package Classes Interfaces Total Members
java.applet | 3 40
Jjava.awt 4 14 1640
java.awt. accessibility (4] 7 193
java.awt.color 7 0 179
java.awt datatransfer 4 2 45
java. awt.dnd 13 4 134
java . awt . dnd, peer 0 3 19
java. awt _event 20 13 156
java. . wt.font 13 2 353
Jjava . awt _geom. 12 | 613
Java. awt.im 2 | 7
java.awt.image 42 1 794
java . awt . image_codec & 0 105
java. awt.image. renderable 4 3 o
java.awt _peer 0 26 116
Jjava. awt.print 9 3 176

(Continued)

Copyrighted material

Table L4 (Continued)

Java.awt . swing 147 n 1256
Java.awt.swing.border 9 1 131
Java.awt swWwing.event 19 19 167
java.awt . swing.plaf 39 1 135
Java.awt, swing.plaf.basic 107 0 17E8
java.awt.swing. plaf.metal 42] EET
java.awt swing.preview 0 l 257
java.awt . swing.table 9 4 266
Jjava.awt swing.text i 21 961
Jjava.awt swing.text.html 39 0 100
java.awt.swing.text.rtf 1 0 7
Jjava.awt . swing.tree 4 T 202
java.awt.swing.undo 7 2 o7
java.beans 17 B 178
java.beans.beancontext 1 B 175
Java.io 66 11 733
java.lang 2 4 02
java.lang. ref 6 0 21
java_ lang.reflect B 1 104
java.math 2] B8
java.net 28 4 208
Jjava.rmi 19 | 53
Jjava.rmi. activation 12 4 i
java.rmi_dgc 2 1 10
Java.rmi. registry | 2 14
Java.rmi.server 17 7 119
java.security 51 i M2
java. security.acl 3 5 0
Java.security.cert 1 1 B0
java.security.interfaces 0 5 B
Java.security.spec 8 2 27
java.sql 10 18 640
java.text 20 4 352
java.util k- 13 n7
Java.util.jar B 0 75
Java.util.mime 3 1] 9
java.util.zip I6 1 157
org.omg.CORBA TR i 66l
org.omg.CORBA . ContainedPackage | i 4
org.omg.CORBA.ContainerPackage 1 4] 5
org.omg.CORBA. InterfacelefPackage 1 4] 0
org.omg. CORBA.ORBPackage 1 0 1
org.omg.CORBA . TypeCodePackage 2] 2
org.omg. CORBA . portable 4 l 95
or.omg.CosNaming 20 2 138
org.omg.CosNaming . 18 0 o1

MamingContextPackage

Copyrighted material

Hidden page

10,

[

13,

14.

15.

16.

17.

18,

Appendix J: § C J#P Exam Model Questions 423

When x is a positive number, the operations x > > 2 and x > > > 2 both produce the same result.
A, True
B. False

Ifa=10and b= 15, then the statement x =(a>b)7a: b;
assigns the value 15 to x.

A, True

B. False

In evaluating a logical expression of type
boolean expressionl &% boolean expression?

both the boolean expressions are not always evaluated.
A. True
B. False
In evaluating the expression (x = = y && a < b) the boolean expression x = = y is evaluated first
and then a < b s evaluated.
A. True
B. False

The default case 15 always required in the switch selection structure.
A, True
B. False

The break statement is required in the default case of a switch selection structure.
A, True

B. False

The expression (x = = y &£& a < b) is true if ether x = = y is true or a < b is true.
A, True

B. False

A vanable declared inside the for loop control cannot be referenced outside the loop.
A, True
B. False

Java always provides a defaull constructor to a class.

A, True
B. False

When present, package must be the first noncomment statement in the file.

A, True
B. False

The import statement is always the first noncomment statement in a Java program file.
A, True
B. False

Ohbjects are passed to a method by use of call-by-reference.
A, True
B. False

It is perfectly legal to refer to any instance variable inside of a static method.
A. True
B. False

19.

20.

21.

23,

24,

23,

26,

27.

18,

29,

30,

il.

32

When we implement an interface method, it should be declared as public.

A, True
B. False

We can overload methods with differences only in their retum type.
A. True
B. False

It 15 an error to have a method with the same signature in both the super class and its subclass
A, True J
B. False

A constructor must always invoke its super class constructor in its first statement.
A. True .
B. False

Subclasses of an abstract class that do not provide an implementation of an abstract method, are
also abstract.

A, True

B. False

Any class may be inherited by another class in the same package.
A, True
B. False

Any method in a super class can be overridden in its subclass.
A. True

B. False
Ome of the features of Java is that an array can store many different types of values
A. True
B. False

An individual array element that is passed to a method and modified in that method will contain
the modified value when the called method completes execution.

A True

B. False

Members of a class specified as a private are accessible only to the methods of the class.
A. True
B. False

A method declared as static cannot access non-static class members.
A True
B. False

A static class method can be invoked by simply using the name of the method alone.

A True

B. False

It is an error, if a class with ene or more abstract methods i1s not explicitly declared abstract.
A, True

B. False

It is perfectly legal to assign an object of a super class to a subclass reference without a cost.
A, True
B. False '

33

34,

35,

36.

37.

38.

39,

41.

42,

43.

45,

It is perfectly legal to assign a subclass object to a super class reference.
A True

B. False

Every method of a final class is implicitly final.

A, True

B. False

All methods in an abstract class must be declared abstraect.
A, True
B. False

When the String objects are compared with = =, the result is true 1f the stnngs contain the same
values.

A True

B. False

A String object cannot be modified after it is created.
A. True
B. False

The length of a String object s1 can be obtained using the expression sl.length.
A, True
B. False

A catch can have comma-separated multiple arguments.
A True
B. False

. It is an error to catch the same type of exception in two different cateh blocks associated with

a particular try block.
A. True
B. False

Throwing an Exception always causes program termination.
A True
B. False

Every call to wait has a corresponding call to motify that will eventually end the waiting.
A. True
B. False

Declaring a method synchronized guarantees that the deadlock cannot occur.
A, True
B. False

The programmer must explicitly create the System.in and System.out objects.

A, True

B. False

If the file-position pointer points to a location in a sequential file other than the beginning, we

must use the seek method to bring the pointer to the beginning, to read from the beginning of
the file again.

47.

48,

50.

5l

32,

53.

53.

56,

57.

A, True
B. False

To delete a file, we can use an instance of class File.
A, True
B. False

A panel cannot be added to another panel.
A. True
B. False

Frames and applets cannot be used together in the same program,
A. True
B. False

A final class may not have any abstract methods.
A True
B. False

A class may be both abstract and final.
A. True
B. False

A thread wants to make a second thread ineligible for execution. To achieve this, the first thread
can call the yield{) method on the second thread.

A, True

B. False

A thread can make a second thread ineligible for execution by calling the suspend() method on
the second thread.

A, True

B. False

A Java monitor must either extend Thread class or implement Runnable interface.

A True

B. False

The CheckboxGroup class is a subclass of the Component class.

A, True

B. False

If a frame uses a Gnd layout manager and does not contain any panels, then all the components
within the frame are of the same width and height.

A. True

B. False

With a Border layout manager, the component at the centre gets all the space that is left over,
after the components at North and South have been considered.

A, True

B. False

The CODE value in an <APPLET= tag must name a class file that is in the same directory as the
calling HTML page.

A. True

B. False

Hidden page

Hidden page

13.

14,

13,

16.

17.

E. =<
F. None of these

What is the result of the expression
(1&2)+(31!4

in base ten.

Emounmp

ich of the following will produce a value of 22 if x = 22.97

Which of the following will produce a value of 10 if x =9.77
A floor(x)

H. abs(x)

C. rnint(x)

D. round(x)

E. cel(x)

Which of the following expressions are illegal?
A (10| 5)

B. (false && true)

C. boolean x = (boolean)10;

D. floaty = 12.34;

Which of the following lines will not compile?
byte bl = 5, b2 =3, b3;

short § = 25;

b2 =s;

b3 = bl * b2;

Line 1 only

Line 3 only

Line 4 only

Line | and Line 4 only

Line 3 and Line 4 only

hich of the following are illegal loop constructs?
while(int i > 0)

{1- -; other statements; }

for(inti= 10, mtj=0; 14 > 5;i=1-2, j++)
d

i

mMOUN@mpswN-—

m E

Body statements

430 Froghamiriig s . P

C. inti=10;
while(i)
i

i
D. inti=1, sum = (;
do {loop statements}
while(sum < 10 || i<5);
19. Consider the following code
it (number == 0}
if (number > 0)
System.out printin {"Number s positive™)
else
System.out printin ("Number 45 negative~)

What will be the output if number is equal to 07
A. Number is negative

B. Number is positive

C. Both Aand B

D. None of the above

20. Which of the following control expressions are valid for an if statement?
A. an integer expression
B. a boolean expression
C. citherAorB
D. Neither A nor B
21. In the following code snippet, which lines of code contain error?
1. imtj=0;
2. while(j < 10) |
3, j+ +:
4, 1ifi) = = 5) continue loop;
5. System.out.printin(*j is™ + j); }
A. Line2
B. Line3
C. Line4
D. Linc5
E. None of the above
22, Consader the following code;
char ¢ = "a
switch (c)

{

Body statements

case ‘a
System. out printin ("A")
case ‘b

System.out _printin {°B")
default:
System.out._printin {°C")

For this code, which of the following statement is true?

A, output will be A

B. output will be A followed by B

C. output will be A, followed by B, and then followed by C
D. code is illegal and therefore will not compile

23, Consider the following class definition.
class Student extends String
{
}
What happens when we try to compile this class?
A. Will not compile because class body is not defined
B. Will not compile because the class is not declared public
C. Will not compile because String is abstract
D. Will not compile because String is final
E. Will compile successfully.

24, What 15 wrong in the following class definitions?
abstract class Print

{
abstract show ()
t
class [Display extends Print
!
1

A. Nothing is wrong
B. Wrong. Method show() should have a return type
C. Wrong. Method show() is not implemented in Display
D. Wrong. Display does not contain any members
25. What is the error in the following class definition?
abstract class XY

{

abstract sum {(int x. int y) { }

}
A, Class header is not defined properly

B. Constructor is not defined
C. Method is not defined properly
D. Mo error

26. Consider the following class definitions:
class maths

{
Student studentl:

class Student

[

S5tring name:

}

Hidden page

Hidden page

18, Consider the following code:
class ClassA

{

public static void main (String args [])

{
ClassB b = classB {) ;

I
ClassA (int x) { }

class ClassB extends Classh

!
)

What will happen when we compile and run this code?

A. Compile and run successfully

B. Error. ClassA does not define a no-argument constructor
C. Ermror. ClassB does not define a no-argument constructor
D. Error. There is no code in the class ClassB

E. Error. There is no code in the constructor ClassA (int x)

39. A package is a collection of
A. classes
B. interfaces
C. editing tools
D. classes and interfaces
40. Which of the following statements are true?
A. An abstract class may not have any final methods.
B. A final class may not have any abstract methods.
C. An inner class may be declared with any accessibility kevword.
D. Transient variables must be static.

41. Which of the following defines a legal abstract class?
A, class Vehicle {
abstract void display(); }
B. abstract Vehicle |
abstract void display{); }
C. abstract class Vehicle {
abstract void display(); |
D. class abstract Vehicle |
abstract voud dusplay(), }
E. abstract class Vehicle |
abstract void display(); {
System.out.println{*“Car™); }}

Copyrighted material

42. Package pl contains the following code:

package pl:
public class Student { Body of student |

class Test { Body of Test |}

MNow consider the following code:

import pl.*;
class Result

{

Student sl:
Test tl;
}
This code will not compile because
A. Class Result should be declared public.
B. Smdent class is not available.

C. Test class 15 not available.
D. Result body is not fully defined.

43, Consider the following code:
interface Area

, |
float compute (float x. float y)

}

class Room implements Area

{
float compute (float x. float y)

{
return (x & y)
1
)
What is wrong with the code?

A. Interface definition is incomplete
B. Method compute() in interface Area should be declared public

C. Method compute() in class Room should be declared public
D. Allthe above
44, The concept of multiple inheritance is implemented in Java by

A. extending two or more classes
B. extending one class and implementing one or more interfaces

C. implementing two or more interfaces
D. all the above

45, Which of the following statements are valid array declaration?
A int number(),

B. float average[|.
C. double[] marks;

D. counter int[];

46,

47.

49,

50.

3l

Consider the following code

int number [] = new int [5]

After execution of this statement, which of the following are true?
number[0] 15 undefined

number{5] is undefined

number(4] is null

number{2] is O

. number.length{) 15 5

mEdnmE#

W‘tmt will be the content of array variable table afier executing the following code?

for (int i=0: 1<3: i++)
for {int j=0. j=3: j++)
if (j == 1) table [i] [j] = I;
else table [i] [3] = 0.

A0 O 0 B 1 0 0 C 0 0 1 D
0O o 0 1 1 0 o 1 0
0 0 0 11 1 I 0 0

Which of the following classes are available in the java.lang package?
Stack
Object
Math
Random
String
. StringBuffer

G Vector
Which of the following are the wrapper classes?

A. Random

B By

C. Vector

D. Integer

E. Shorn

F. Double

G. Stnng

Which of the following contain error?

A, int x[] = int[10];

B. int]] ¥ = new int[5];
C. floatd[] = {1, 2, 3};
()
E
F.

mEpOnEe

. X =v = new int [10];
intal[]=1{1.2};intb[J; b=a;
int i = new nt(10);

Which of the following methods belong to the String class?

Appand .G e oo ar

E. Allofthem
F. Non¢ of them
52. Given the code
String s1 = “yes”;
String s2 = “yes";
String 53 = new S5tring (sl) :
Which of the following would equate to true?
gl = =32
sl =52
53 = =1sl
sl.equals(s2)
. 83.equals(sl)
53. Suppusc that s1 and 52 are two strings. Which of the statements or expressions are comrect?
A. String 83 = 5] + s52;
B. String 53 = s] - 52;
C. 5] =32
D
E.

il

. sl.compareTo(s2);

int m = sl.length();
54. Given the code
String 5 = new 5tring ("abc™) .
Which of the following calls are valid?
A, s.trim()
B. s.replace(*a’, *A")
C. s.substring(3)
D. s.toUpperCase()
E. s.setCharAt(l,*A")
F. s.append(“xyz”)
55. The methods wait{) and netify() are defined in
A. java.lang.String
B. javalang Runnable
C. java.lang.Object
D. java.lang. Thread
E. java.lang ThreadGroup
56. Which of the following statements are true?
A. A Java monitor must either extend Thread or implement Runnable.
B. The sleep{) method should be enclosed in try ... catch block.
C. The yield{) method should be enclosed in try ... catch block.
D. A thread can be temporarnly suspended from running by using the wait() method.
E. A suspended thread using suspend() method can be revived using the resume(} method.
57. Given the following code:
class Base { int x = 10; }
class Derived extends Base
{ int x = 20: }

Base b = new Base [) ;
Derived d = new Derived() ;
Base bd = new Deriwed() :

The statement
System.out.printin (b.x + * ° + d.x + " " + bd.x) :

will produce the output

A 102020

B. 1020 10

C. 20 10 20

D. 2020 10

58. Given the class definitions

class Base

void display()
{ System.out.printin (“Base™) ; }

class Derived extends Base

void display ()
{ System.out_printin ("Derived™) ; }

}

and objects
Base b = new Base():
Derived d = new Derived();
Base bd = new Derived():

then the print statements
System.out printib.display{)} + = “):
System.out print{d.display({) + = ")
System out print(bd.display() + = "):
System.out . printini);

will display:

A_ Base Base Derived

B. Base Denived Base

C. Base Denved Derived

D. Derived Derived Derived

59, When we mvoke repaint() for a Component, the AWT invokes the method:

A draw()

B. show()

C. update()

D. paint()

60. What does the following line of code do?

TextField text = new TextFiled(10):

AL Creates text object that can hold 10 rows of text.
B. Creates text object that can hold 10 columns of text.

Copyrighted material

Hidden page

67. Which of the following strings can be used as mode strings for creating a RandomAccessFile
object?

A tr”

B “w"™

C. “rw"

D. “wr”

E

WT
u-u L

68. What will be the output of the following program?
class Mainl

{
public static void main{String args [1)

{
boolean b = true;
System.out. printIn{"XXi");
return;
System.out.printIn("YYy");

}
}
A XXX
B. YYY
C. XXX followed by YYY
D. Error. Won't compile

69. What will be output of the following program?
class Main2

public static void main(5tring args[])
{
boolean b = true:
System.out . printIn("XXX"):
if(!'b)} return:
System.out . printIn{"YYY");

}
}
A XXX
B 1YY
C. XXX followed by YYY

D. Ermor. Won't compile

T0. Datalnput is
A. an abstract class defined in java.io.
B. aclass we can use to read primitive data types.
C. an interface that defines methods to open files.
D. an interface that defines methods to read primitive data types.

Copyrighted material

Aopand 5 G P Exam Model Quasions “
T1. Which of the following statements are frue?
A. Unicode characters are all 16 bits.
B. UTF characters are all 24 bits.
. Reader class has methods that can read integers and floats.
D. File class may be used to rename a file.
E. DataOutputStream objects are used to write primitive data to a file.

72. Which are the valid ways to create DatalnputStream streams?
new DatalnputStreami);
new DatalnputStream(*in.dat™, “r");
new DatalnputStream(*in.dat™)
new DatalnputStream{new File("in.dat™));
new DatalnputStreaminew FilelnputStream{™in.dat™);
73, Which exception is thrown by the read{) method of InputStream class?
A. Exception
B. FileNotFoundException
C. ReadException
D. I0Exception
E. None of the above

74, In the code below, what data types the variable x can have?

Bullel e

byte bl = 5;
byte b2 = 10:
x = bl * be:
A byte
B mt
C. short
D. long
E. float
F. double
75. If you want to assign a value of 99 to the variable year, then which of the following lines can be
used within an <applet= tag?

A. number = getParameter(99)
B. < number = 99 =
C. < param = radius value = 99 >
D. < param name = number value = 99 =
E. < param number = 99 >
76. What is java g used for?
A. Using the jdb tool
B. Executing a class with optimization tumed off
C. To provide information about deprecated methods
D. None of the above

77. With javadoc, which of the following denotes a javadoc comment?
A g
B /™
C_ .Irll
D. fi*

Hidden page

¥ s
84. Consider the following code snippet:

try |{

int x = 0;

int y = 50/x:

System.out .printIn("Division by zero®):
}

catch{ArithmeticException e) |
System.out.printin{"catch block"):

What will be the output?

A. Error. Won't compile

B. Division by zero

C. Catch block

D. Division by zero
Catch block

85. Which of the following represent legal flow control statements?
break;

break();

continue outer,

continue{inner);

returm,

exit();

mmYnEe

PartC: Short-answer Questions

1. What will be the output of the following code?
byte x = 64, y;
¥y = (bytel (x == Z):
System.out . printiniy).

2. What will be the output of the following code:
byte b
double d = 417.35:
b = (byte) d:
System.out.printin{b):

3. Given the value of a variable, write a statement, without using if construct, which will produce
the absolute value of the vanable.
4. What is wrong with the following code?
switchix)
4
case 1:
nl = 10:
nZ = 20;

case 2:
nd = 30:
break
nd = 40:
)
5. What will be the output of the following program code?
int m = 100;
int n = 300:
while (++m < --n}:
System.out_printin{m):

6, What does the following fragment display
String 5 = “six:” + 3 + 3
System.out printin(s):

7. What is the output of the following code?
String s:
System.out printin(™s = ° + §);

8. What is the output of the following code?
String 5 = new String{):
System_out printin("s = ° + s5);
9. What is the problem with the following snippet?
class 09
{
public static void main{String args[1)
{
int i=5 j=10.
it ((i<4) || (1=10))
System.out.printin{“0K™):
System.out printin{"NOT 0OK");

)
)

10. 'What will be the output of the following code snippet?
int x = 10;
int y = 20;
if ({x<y) || (x=5)>10)
System.out.printin(x):
else
System, out.printin(y):
11. Show the output the following code:
int a. b;
a==5
b = 10;
ifla > 5)
ifib = 5)

Copyrighted material

Apriae B P EravihMadef Gulatons. 445

{
System.out.printin{”b is ~ + b);
}
elce
System.out . printIn{“a is = + al);
12. State the output of the following code:
int a= 10:
int b= §;
if{a = b)
{
ifib = 5)
System. out.printin(b is ° + b):
}
glse
System.out .printIn{“a 1is" + a):
13, Give the output of the following code:
int m = 100:
while(true)

ifim < 1
break;
m=m-= 10;

)

Systm out.printIn{™m is " + m):

14. Give the output of the following code:
int m = 100;
while{true)
lI
ifim < 10)
continue;
m=m- 10:
}
System.out .printin{m is = + m):

15. Using a single line of code, complete the following class so that it returns x+y if the value of x
is equal to y, otherwise retums 0;
public class XY

{
public return int fun(int x. int y)
{
ceveeee... (one line code her)
}
}

16, Given a package named EDU.Student, how would you import a class named Test contained in
this package? Write one line statement.

Hidden page

Hidden page

Hidden page

 Appendix J: S C.J P Exam Model Questions
System.out.printin(“End”);
}
}
class ThreadTest
{
public static void main(String args[1)
{
Threadl T1 = new Threadl():
Tl.start();
}
)
On execution, what will be the output?

31. Consider the following application:
class Max

public static void main{3tring args[1)

{

int max = 10:

max(max, 20. 30):

System,out.printin{max):
}

ctatic void max(int max, int x1, int x2)

if(xl = x2)

max = x1;
glse

max = x£:

}
}
What value is printed out, when executed?

32. State the output of the following program:
class Recur

{

public static void main(String args[])

{
int Result = result(10):
System.out . printin{"Result =

}

static int result{int m)

+ Result):

if (m <= 2)
return m;
else
return m + resulti{m-2);

33, Consider the class definition:
class Default

{
public static wvoid main(String args[1)
{
int m;
System.out.printin{™m is =~ + m);
}
}

Will this code compile? YES or NO. Give reason, if No.

34, What is the output of the following program?
class Static
]
static int m = 0;
static int n = 0;
public static void main{String args[1)
{
int m= 10;
int x = 20;
{
int mo= 30;
system.out .printini™m + n = " + m + n);
}
X=m+n;
System.out.printin("x =
}
}
35. Consider the following class definitions:
class Square

{

+ X):

private squarel) { }
int area(int side)

return{side * side):

}

)
class Constructor

public static void main(String args 1)
{
Square 51 = new Square():
int area = 51.area(l0);
System.out.printin(area):

}
}
Will the code above compile and run successfully. YES or NO. Give reason, if No.

Copyrighted material

Aobeitic 5 60 P et Nodal Giilns.

36. Write a statement to draw a rounded rectangle with the following features:

width = 200
height = 100
comer horizontal diameter = 20
comer vertical diameter = 40
Select a suitable upper-left comer of the rectangle.
37. Which line of the following HTML file contains an error?

1. < applet

2. WIDTH = 400 HEIGHT = 200
%8 CO0E = HelloJava.Class =
4. < param

o NAME = “strimg”

6. VALUE = "Hello™ =

7. <fapplet=

38. Give the output of the following program:
class MainString

{ .
public static void main(String args(1)

StringBuffer 5 = new StringBuffer(™String”)
if(s.length{)=5) &&
(s.append{ Buffer”}.equals(*X")
/S empty statement
system.out . printinis);
}
}

39. What is the range of the value that can be assigned to a variable of type long?

40. Consider the following program:
class MNumber

{
int
yoid store(Number num)

{

MLm, x++

}

class MainNumber

'I

public static wvoid main{5tring args[1)
{
Number n = new Number():
n.x = 10;
n.store(n):
System.out.printinin.x);
}
!

What is the output?

451

Hidden page

Hidden page

Hidden page

Hidden page

15.

16.

17.

18.
19.

20.

21.
22,

23,

25.
26.

27.
28.

29,
30.

3.

32,
33

35,

36.
37,

A class member declared as private will remain pnivate to its class. It 1s not accessible by any
code outside its class, including subclasses.

The star form of import statement may increase compile time. It will be good practice to
explicitly name the classes that we want to use rather than importing whole packages.

Interfaces add most of the functionality that is required for many applications which would
normally require the use of multiple inheritance in C++.

When we implement an interface method, it must be declared as public.

If a finally block is associated with a iry, the finally will be executed upon conclusion of the
try.

Java uses pointers (addresses) intemally to store references to objects, and for elements of any
array of objects. However, these pointers are not available for use by programmers.

We cannot overload methods with differences only in their return type.

When a method with the same signature occurs in both the super class and its subclass, the
method in the subclass overnides the method in the super class.

Every constructor must invoke its super class constructor in its first statement. Otherwise, the
default constructor of the super class will be called.

A class marked as final cannot be inherited.
A method marked final cannot be overmidden.

Subclasses of an abstract class that do not provide an implementation of an abstract method, are
also abstract.

K.2 C/C++ Related

A Java string is not implemented as a null-terminated array of characters as it is in C and C++,

Most of the Java operators work much the same way as their C/C++ equivalents except for the
addition of two new operators, =>> and *.

The companson operators in Java return a Boolean true or false but not the integer one or zero,

The modulo division may be applied to floating point values in Java. This is not permitted in C/
C++,

The control variable declared in for loop is visible only within the scope of the loop. But in C/
C++, it is visible even after the loop is exited.

Methods cannot be declared with an explicitly void argument list, as done in C++.
Java methods must be defined within the class. Separate definition is not supported.

Unlike C/C++, Java checks the range of every subscript and generates an error message when
it is violated.

Java does not support the destructor function. Instead, it uses the finalize method to restore the
MEemaory.

Java does not support multiple inheritance.

C++ has no equivalent to the finally block of Java,

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

462

control variable

data field
data type

deadlock
derived class
dialog box
doctags

double
dynamic linking

encapsulation

exception

exception handler
CXPression

field
final

floating point

font

Programming with Java: A Primer '

The vanable that a program evaluates to determine whether or not
to perform an action. Control variables are used in loops, switch
statements, and other similar programming constructs,

The data that is encapsulated in an object.

The type of valuc represented by a constant. variahble. or some
other program object. Java data types include the integer types
byte, short, int, and long; the floating-point types float and
double: the character type char; and the Boolean type boolean.
Deadlock occurs when two or more threads are waiting for
resources that they can't get.

A class that inherits from a base class.

A special pop-up window that can present important information
to the user or that requests information from the user. A dialog
box is an object of Java's Dialog class.

Special symbols used by the javadoc tool to document Java
packages and methods.

In Java, the double is a data type, which is 62 bits in length.
When functions called within a program are associated with the
program at runtime rather than at compile time.

A way to contain data and methods in a class so that methods and
variables may be added, changed, or deleted without requiring the
code that uses the class to change.

A signal that something has happened to stop normal execution of
a program, usually an error.

Code that responds to and attempts to recover from an exception.

A line of program code that can be reduced to a value or that
assigns a value,

A keyword used to make one class a subclass of another, for
example, class subclass extends superclass.

A data object encapsulated in a class.

A modifier that prevents subclass definition, makes variables
constant, and prevents a subclass from overnding a method.

A method that is called when there are no further references to an
object and it 1s no longer needed. This method releases resources
and does any other necessary cleanup that Java does not handle
during garbage collection.

In Java, the float is a data type, which is thirty-two bits long,

A value with both whole number (including zero) and fractional
parts.

A set of characters of the same style.

- Appendix M: Glossary of Java Terms 463

frame window A special pop-up window that can be displayed from an applet. A
frame window is an object of Java's Frame class.

GIF Ome type of data format for storing graphical images on disk.

GLIT Stands for Graphical User Interface. It i1s pronounced like
——

high-level language A computer language that isolates the programmer from the
intricate details of programming a computer. Java is a high-level
language.

Hotlava A Java-capable browser from Javasoft.

hspace An attribute of the HTML <APPLET= tag that specifies the
amount of horizontal space{to the left and right) between the
applet and the text on the page.

HTML Hypertext Markup Language, the language used to create Web
PAges.

identifier A symbol that represents a program object.

index The same as a subscript. Used to identify a specific armray element.

infinite loop A loop that cannot stop executing because its conditional
expression can never be true,

inheritance A property of object-oriented languages where a class inherits the
methods and variables of more general classes.

initialise Set the starting state of a program object. For example, you

should nitialise vanables to a value before you attempt to use
them in comparisons and other operations.

instance A concrete representation of a class or object. A class can have
many instances.

instance variable A variable allocated once per instance of a class.

instantiate To create a concrete object from a class “template™, New objects
are instantiated with new.

int In Java, the int is a data type, which is 32 bits long.

integer A whole-number value.

interface A collection of methods and vanables that other classes may

implement. A class that implements an interface provides
implementations for all the methods in the interface.

Internet A huge world-spanning network of computers that can be used
by anyone with a suitable connection.

Interpreter A program that performs both language translation and program
execution. java is the Java interpreter.

Java The program used to invoke the Java interpreter, which executes

Java programs.

464

Jjava file
javae
javac_g

Java-capable browser

javadoc

javah

javah g
Javap
JavaScript
jdb

JDBC

JDK
literals

local applet
logical expression
logical operators
long

loop

method
modifier

modular programming

A file containing Java source code.
A command for runming the Java compaler.
A command for running a non-optimized version of the Java

compiler. The javac g command can be used with debuggers,
such as jdb.

A Web browser that can run Java applets. Also called a Java-
enabled or Java-enhanced browser.

A command that is used to generate APl-style HTML
documentation automatically.

A command that can create C include files and stubs from a Java
«class file. The resulting C files allow C code to access parameters
passed from Java, return values to Java, and access Java class
variables,

A command that can create C include files and stubs with debug
information from a Java .class file.

A command that disassembles Java .class files.

A Java-based scripting language.

The Java debugger.

A database access API from JavaSoft that allows developers to
access databases with Java programs.

The Java Developers Kit.

Values, such as a number or text string, that are written literally as
part of program code. The opposite of a literal is a variable.

An applet that is stored on the local computer system, rather than
somewhere else on the Internet.

An expression that results in a value of true or false. (see Boolean
expression)

Operators like && (AND) and | | (OR) that enable you to create
logical expressions that yield true or false results.

In Java, the long is a data type which is 64 bits in length and can
hold truly immense numbers.

A program construct that enables a program to perform repetitive
tasks.

A routine that belongs to a class.

A Java keyword that is applied to a method or variable declaration
to control access, control execution, or provide additional
information.

Breaking a large program down into a number of functions, each
of which performs a specific, well-defined task.

Hidden page

pelymorphism
protocol handler
radio buttons
remote applet
Runnable interface

runtime exception

scope
Server

short
single inheritance

spaghetti code
standalone application

Streams

structured programming

stub

subclass

‘Programmiing with Java: A Primer

A unit of measurement of a font's height. One point is equal to
1/72 of an inch.

In object-oriented programming, this is the ability for a new object
to implement the base functionality of a parent object in a new
way.

A java routine that interprets a protocol, generally for a browser.
A group of checkboxes in which only one checkbox can be
selected at a time.

An applet that is stored on another computer and which must be
downloaded to the local computer over the Internet.

An interface that allows a class the ability to run in a distinet
thread without being a subclass of Thread.

An exception thrown by the system in response to unexpected
problem when a program is running. An example would be the
exception generated when an applet attempts to perform a division
by zero.

Defines where a method or variable is visible, A vanable defined
in a method is visible only.

A computer system that supplies services to another computer
called client.

In Java, the short is a data type which is sixteen bits in length.

When a class inherits methods and fields directly from only one
baseclass.

Program code that keeps jumping from one place to another in
the program without any apparent orgamsation,

In the context of the Java language, an pan that doesn’t need to be
embedded in an HTML document. The opposite of an applet.

Controlled flows of data from one source to another. Java
supplies several classes to create and manage streams. Classes
that handle input data are denved from class InputStream, and
classes that handle output data are derived from class
OutputStream.

A style of programming in which the program code is divided into
logically structured chunks of code.

Part of the interface between Java code and a native method. A

stub allows a native method to access Java parameters, access
Java class variables, and return data to Java.

A class that inherits methods and variables from another class.
The statement class SubClass extends SuperClass means that
SubClass is a subclass of SuperClass.

Hidden page

Projects

I. The Calculator Application

g Learning Objectives

The development process of the Calculator application will aid the students to:

Create a simple Java console application

* Understand the object-oriented concepts of inheritance, polymorphism and data hiding

® Create application which request input from users, validate, process the input received and
provide desired output

& Use features of java like type conversion, interfaces, inheriting interfaces, looping and branching,
packages and 'O classes,

g Understanding the Calculator
Application

The Calculator application performs both basic and scientific operations. The application provides user
an option to choose between the basic mode and scientific mode. Based on the option selected by the
user, the application calls the comesponding ¢lass and the user can perform various mathematical
operations provided in the class. There is a base class in the application which contains all the methods
for calculation, basic as well as scientific. The application validates the user input also and provides
appropnate messages when wrong input is given by the user.

4 469
m

g Creating the Calculator Application

To create the Calculator application, 5 java files were created. First, an interface iCalc, with the file
name¢ “iCalc.java™ is created. Then, we create the base class Calculate, with the file name
“Calculate java™ which contains all the methods for calculation. After the base class, two classes,
Calculator and ScientificCalculator, with the file names as “Calculator.java™ and “ScientificCal-
culatorjava™ are created. These classes call the methods defined in the base class Calculate. Class
Calculator contains an instance of Class Calculate, whereas Class ScientificCalculator inherits Class
Calculate and then uses its methods. After creation of all the above classes, a main class UseCalculate
is created, with the file name “UseCalculate. java” which provides creates instances of Class Calculator
or Class ScientificCalculator, based on the option selected by user.

Creating the Java Files

The iCalc Interface (iCalc.java)
Interface iCale provides the structure of methods which can be used in any calculator application. It
contains the following two methods:
s doCalculation(): Declares a method for providing methods for calculation.
& getResult(): Declares a method for extracting the result of the calculation.
The Calculate Class (Calculate java)

Class Calculate contains the business logic of the Calculator application. It contains the methods for

calculation of various mathematical operations like addition, divide and tangent. Class Calculate uses
interfaces by implementing Interface iCalc. The class contains following methods:

Method Description

Calculate() Default constructor for the class without any arguments.

Calculate(Double dblNum, char cOperator) Constructor containing two arguments. This constructor is
used for scientific calculations.

Calculate{int iFirstNum, char cOperator, Constructor containing three arguments. This constructor
mt iSecondNum) is used for basic calculations.
doCalculation() Calculates the result based on the numbers and operator

inputted by the user. Overriding the doCalculation
function.of iCale interface.

getResuli() Prints the resuli of calculation, Overriding the getResult
function.of iCale interface.

checkSecondNumi() In case of division of two numbers, it checks for value 0 in
the second number entered.

checklnt() Checks if basic calculation is performed.

checkDouble() Checks if scientific calculation is performed.

Hidden page

Appendix N: Projects 471

-
F
- Working with the Calculator
Application
The steps for working with the Calen!ator application are:
* In the command prompt. go to the parent directory of “Calculator” directory which contains the

class files for Calculator application.
Enter the following command to run the Calculator application:
java Calculator.UseCalculator

Enter ‘b’ (for Basic operations) or *s” (for scientific operations) depending on the operations to
be performed.
If *b° is entered, the following input is to be entered by the user:

» First Number

o Operator

¢ Second Number
The result is shown on the command prompt based on the above values.
Enter *y" to continue or *n’ to discontinue using the application.
If *s" i1s entered, the following input is to be entered by the user:

& Operator

s Number

® The result is shown on the command prompt based on the above values.
» Enter 'y’ to continue or ‘n” to discontinue using the application.

@ Code for the Calculator Application

iCalc.java

— Interface 1Cale represents the basic methods for the Calculate class
— Creates Interface Structure

— Can be used for creating any class which would do any sort of calculations

{/ Adds the Interface to the Package
package Calculator;
ffInterface Definition
interface 1iCalc
{
pupiif worad aoldiculationd):
public void getResult{):

Hidden page

cASE =

Case "®

case S

case 'S

case '§’:

case "CT:
case C:

casp T
case ‘'t':

case

case ‘1"

default:

checkInt():
1Result = iFNum + iSNum:
break ;

checkInt();
iResult = iFNum = iSNum:
break :

checkInt():
iResult = iFNum * SHum:
break ;

checkInt():
if({'checkSecondNum{))

{
iResult = iFNum / 1SNum:

break ;

checkDouble() :

dblResult = Math.sin{db]Number):

break :

checkDouble().

dblResult = Math.cos(dblNumber)-

break

checkDoublel) -

dbTResult = Math.tan(dblNumber):

break ;

checkDouble():

dblResult = Math.log(dbiNumber);

break ;

fResult=0:
dblResult=0.0:

System.out . printin{ ***0peration Not Available. Please

Copyrighted maierial

Hidden page

Hidden page

System, out.printin("Please enter the Operation (Add : +, Minus : -,
Product : *. Divide : /7):7);

System,out. flush():

String option=buffer readline();

System.out printin{“Please enter Second Number: ").
System.out. flush();
Lry
{
iSecondNumber=Integer. parselnt (buffer.readline() . 10} :
f
catchi{NumberFormatException e)
{
System.out printin("***Please provide numeric values.***"):
System.exit(0):
1

1f{option.lengthi j==1}

{
ff Creates Calculate Class Instance
Calculate c= new
Calculate{iFirstNumber.option.charAL(0) . 15econdNumber) ;
f Calls the class methods
c.doCalculation();
c.getResult();
}
else
|
System.out . printin{ ***Jperation MNot Available. Please select
any of the available options, ***"}):
}

ff Checks if the user would Tike to compute again

System out printin{“Would you like to calculate again (y/n)?"):
System.out ., flush{):

char response=(char)buffer.read();

if ({response=="y") || (response=="Y"))

{

next=false:
|
plse
{

next=true:
}

}

while (Inext}:

Copyrighted material

Hidden page

Hidden page

Hidden page

ExERcCISES

—
—

. Write the java code to calculate scientific operations like asin, atan and acos in the Calculator
application. >

2. Wnite the java code to use both, basic and sciemtific operations available in Class Calculate using
multiple inheritance.

II. The FontAnimation Application

@ Learning Objectives

The development process of the FontAnimation application will help the students to:

¢ (Create a simple Java based GUI application
* Understand the concept of applet programming
» Implement Graphics and multi-threading programming concepts.

f;g Understanding the FontAnimation
Application

The FontAnimation application presents the concepis of Applets, Graphics and multi-threading in java.
The application creates an applet which draws a text and keeps on increasing its font size to a defined
maximum limit and then reduces the font size back to the original size. The process is dynamic and
continuous, The user is provided options to change the text and text color. Events and listeners have

also been used in the application.

g Creating the FontAnimation Application

Class FontAnimation uses Abstract Window Toolkit (AWT) controls to add textfields and buttons to
provide options to users for dynamically changing the text and its color, while running the applet. To
create the FontAnimation application, create a file named FontAnimation.java which inherits Applet
and implements Listener ActionListener which listens to actions performed using JButton control.

Creating the Java File

The FontAnimation Class (FontAnimation java)
Class FontAnimation inherits applet and uses thread programming to dynamically change the text size
and its color. It contains the following methods:

o init(): imit() Is a lifecycle method 1::I'a.pplr:i and is used to initialize the applet object. Adds controls
to the applet and registers the ActionListener for JButton control.

Apoendix N: Frojects.. 40

o actionPerformed(): Method of Listener ActionListener and is called on the click of JButton
control. The method contains the code for getting the user input, namely, text and the text color
properties and applying the user-entered values to the initial values. After updating the text,
applet is painted again to show the changes made.

+ paint{): Draws the text and sets its color and uses threads to continuously change the size of the
text.

Generating the Class Files

The steps for generating the class file for FontAnimation application are:
* Place the FontAnimation.java file in the required directory.

¢ [n the command prompt, go to the directory where the java file is stored.
* Compile the file using the command for compiling the java files:

javac FontAnimation.java
Creating the HTML File

To use an applet, an HTML file has to be created which will call the Java Applet. To add Class
FontAnimation to FontAnimation.html file, HTML tag WFLET} i5 used in which the code attrnbute
will contain the value “FontAnimation.class™.

\5 Working with the FontAnimation
Application

The steps for working with the FontAnimation application are:

® In the command prompt, go to the directory contaning the class files for FontAmmation.
¢ Enter the following command to run the Calculator application:

appletviewer FontAnimation.html

* The applet will be displayed with the default text as “Hello™ and color as “black”.

¢ The user can change the text and Red, Green and Blue values for color of the text. On clicking
button “Apply”, the text changes according to the user entered values,

¢ Dunng the running of the applet, the text size will continuously increase and decrease.

@ Code for the FontAnimation
Application

FontAnimation.java

import java.applet.*;

import java.awt.®;

import java.awtevent.®;

public class FontAnimation extends Applet implements ActionListener

{

TextField text=new TextField(20};
TextField red=new TextField(20).
TextField gr=new TextField{Z20);
TextField blue=new TextField(20):
Button bl=new Button(Apply”):
String str="Hello™:

int size=10;

Font T;

boolean inc=true:

int r.q9.b;

Color fcolor:

public woid init()

{

add{new Label{"Enter Text to animate here”))
add({text):

add(new Labeli{"Enter value for Red Color here™)):
add(red):

red. setTest{"0"});

addinew Label{"Enter value for Green Color here™)):

add(gr);

gr.setText("0");

add(new Label{"Enter value for Blue Color here™)):
addiblue):

blue.setText("0");

add(bl);

bl.addActionListener{this);

public woid actionPerformed{ActionEvent e)

{

}

1fie. getSourcel)==h1)

{
str=text.getText():
if(str=="")

str="Hello™;

r=Integer.parselnt{red.getText());
g=Integer parselntigr.getText()):
b=Integer.parselnt{blue.getText());
fcolor=new Colori(r.g.b);
repaint({);

}

public wvoid paint{Graphics g)

{

Copyrighted material

NP P 483

f=new Font(“Arial”.Font BOLD.size):
g.setFont(f);

g.setColor{fcolor):
g.drawString(str.50.200);

Lry
{
Thread. sleep(500);
}
catch{Exception e)
{
System.out.printini{e.getMessage()):
}
if{inc==true)
{
size+=10;
if{size==100)
inc=false;
}
else
{
size-=10:;
if{size==10)
inc=true:
}
repaint();
}
}
FontAnimation.html
<htm]=>
<head=

<title=fApplet Demonstrating Applet and Thread Programming in Java</title>
</head=
<body=
<APPLET CODE-FontAnimation.class *
WIDTH=400 HEIGHT=B00>
</APPLET=>
=/body=>

</html>

1. Write the java code to add other graphics controls to an applet like line, rectangle and others.

Copyrighted maierial

Sk W

10.
11.
12.
13,
14,

15.
16.
17.
18,
19.
20.
21.
22,
23,

Bibliography

Aaron E.Walsh, Foundations of Java Programming for the World Wide Web, IDG Books
Worldwide, 1996.

Amuff Ed, The Java Sourcebook, John Wiley & Sons, 1996,

Au, Edith and Dave Makower, Java Programming Basics, MIS Press, 1996.

Balagurusamy, E., Object-Orienred Programming with C+ +, Tata McGraw-Hill, 1995,
Balagurusamy, E., Programming in ANSI C, Tata McGraw-Hill, 1992,

Bartlett, Leslie and Simkin, Java Programming Explorer, Coriolis Group Books, 1996,

Boone, Barry, Java Essentials for C and C+ + Programmers, Addison Wesley Developers Press,
1996,

Daconta, Michael C., Java for C/C+ + Programmers, John Wiley & Sons, 1996,

Davis, Stephen R., Learn Java Now. Microsoft Press, 1996.

December, John, Presenting Java, Sams.net, 1995. '

Flanagan, D, Java in a Nutshell, O'Reilly & Associates, 1996,

Holzner, Steven, Java Workshop Programming, M & T Books, 1996.

Lemay, Laura and Charles L. Perkins, Teach Yourself Java in 21 Dayvs, Sams.net, 1996,
Naughton, Patrick and Herbet Schildt, Java: The Complete Reference, Osborne MeGraw-Hill,
1996,

MNaughton, Patrick, The Java Handbook, Osbome MeGraw-Hill, 1996,

Newman, Alexander, et al., Using Java, Que Corporation, 1996,

Morton, Peter and William Stanek, Guide fo Java Programming, Sams.net, 1996,

Perry, Paul 1., Creating Cool Web Applets with Java, IDG Books, 1996,

Sams.net, Java Unleased, 1996,

Sivam, Karanjit S., Inside Visual J+ +, New Riders, 1996,

Stout, Rick, The World Wide Web, Complete Reference, Osborne McGraw-Hill, 1996,

Tyma, Paul M., Gabriel Torok and Troy Downing, Java Primer Plus, Waite Group Press, 1996,
Walnum, Clayton, Java by Example, Que Corporation, 1996,

abstract classes 1dd

ahstract methods
access modifers

L44
147

friendly 147

private 147

protected 147

public 147

accessing class members
accessing interface variables
accessing packages 196
adding a class to a package 20]

ppplet |2

131

building code for 247
executable 2%5]

life-cvele of
local 244
remote 244

249

parameters for 282
preparing for 246
applet tag 21, 253

appletviewer 21
arithmetic 69

1

expression 60
floating point G2

integer 6]
mixed-mode

62

operators G

real A&l
arrays |55

creation |53

declaration
initialisation

155
L36

36

Index

length of 157

one-dimensional 153

sinng 162

two-dimensional |58

variable size L&1
assignment operators G
assignment statement 49
asgociativity operalors 74
automatic type conversion 53, 71

backslash character constants 45
base class |38
bitwise operators &8
blocking a thread 2]3
boolean type data 48
bettom-up programming |
break statement |8
branching &1
buffered input stream 110
buffered output stream 3]0
bytecade |3, 21, 38
byte stream classes 290
input stream 291-292, 204-295

output stream 291-293, 294-295

C 211, 14, 16

C++ 2,11 14,16
casting 53, 72
character constant 45

character iype data 48
child class 13K
class variable 51,135
classes 3, 116

abstract |44

graphics 210

math I6

string LA2

stringBuffer |62, 164

vector |66

wrapper 1467
client 24
codebase atribute 245
command line arguments 39
compiler 11,24, 37
compiling a program 37
concept of stream ZHE

gource 289

destination 289
conditional branching Bl
conditional operators 67, 97
constants 43

backslash characters 45°

character 43

integer 41

real 44

string 45

symbolic 52
constructors L33
continue statement 19
conirol statements 81

break 11K

continue 118

do 10K

for 110

i 81, 83

switch 93

while 107
control visibility 146

conventions of naming packages

creating a program 15
creating an array 155
creating objects 130
creating packages 193
creating threads 209
creation of files 298

data abstraction 4
data hiding 4

¥

ot

data types 46
boolem type 48
character types 48
floating point 47
mteger types 47
dead locks 123
declaration of variable 48
decrement operators G5
default values 537
defining interfaces |31
derived class |38
do statement LOE
documentation comment 29
dot operators 69, 133
dynamic binding 6, 5

else if lndder 20
empty statement 34, 114
encapsulation 4, 126
entry controlled loop 105106
errors 230
compile time 230
fun time 230
exceptions 2137
executable applet 151
exit controlled loop 105-106
expreszions G2
evaluation of 09
mixed-mode &2
type conversion in 11
extending a thread 210

extending interfaces 13

fields 126
fileinputstream 302-306, 311
fileoutputstream 302306
file reader 300-307
filtered stream 324

final classes 143

final method 143

final variables 143
finalizer methods 1add
floating point arithmetic G2
floating point data 47

for statement 110
friendly access 147

giving values 1o variables 49
graphical 'O 117
graphics 270

arcs 275

bar charis 282

circles 274

class 270-271

ellipse 274

lines 273-274, 279

hiding classes 202
hierarchical inheritance 141
HotJava 13, 20

HTML documents 245 _25]
HTML file 254-255
HTML tag 282

Hypertext Mark-up Language |8, 24

infinite loop 105

inheritance 5, 126, 127, 137, 1£1
hierarchical |41
multilevel 140
multiple L&1

inheritance path 140
initialization 49
imitialization of arrays |56
instance methods 35
instance of operator G8
instance variable 51, 135
integer constants 43

decimal 43
hexadecimal 43
octal 43
interger type data 47
integer arithmetic 61
interactive [&0 314, 315
imerfaces 181
accessing variables 1Ef
defining |81
extending |83
implementing 154
interface statement 30,_1%]
Internet 17
Internet Explorer 20
interpreter |3, 25, 17
iteration statement 34

Pk e AR B Y] AR
s . PR %‘r?hm
java 21

Java character set 1]

Java code 2]

Java language packages |93
java standard library 22
java statements 34

Java tokens 10
javaapplet 193

jawaawt |93, 3]9
javaio 193, 296 312
Javalang 193,318
javanet 193

javaunl 193, 294

javac 21

javadoc 21

javah 21

Javap 21

jdb 21

Jump statement 34

jumps in loops 118

keywords 32

ﬂ_;*u’ ¥ VT
l— i.l"*-'\- lt‘lﬁ-'ﬁll L ﬂ#m e i
H:-l:]]td.lu-upn Lie

labelled statement 14

length of arrays |57
life-cycle of an applet 249

= LN

life-cyele of a thread 214
lightweight threads 208
literals 33

local variable 51

logical operators fd

machine code 38
machine neutral 18
Managing input'output files 287
secondary storage devices 18T
file processing 287
mathematical functions Th
member variables 127
methods 2, 127, 128
abstract 44
finalizer |44
graphics 270
instance |33
nesting of 136
overloading of 134
overniding of 142
string 162
vector [Bh
final [43
mixed-mode anithmetic 62
modifiability 52
modifiers |46
modular programming]
multiiask 207
multithreaded][4
multilevel inheritance 140
multiple inheritance 181
multithreaded 207

m

MaN 48

narrowing 54

native methods 14
nesting of blocks 31
nesting of loops 114
nesting of methods |36
Metscape Mavigator 20
null statement 113

Oak U
object 2
object-oriented language 1, 13
object-oriented paradigm 2
object-oriented programming 1, 3
objects 126, 130
object stream 323
one-dimensional arrays 153
operators 33
arithmetic &0
assignment 63
associativity of 74
bitwise 68
conditional 67, 97
decrement &6
dot 69, 135
increment B
instance of 68
logical &3
relational &2
shorthand 66
ternary f7
precedence of T, 14
overloading of methods 134
overriding methods |42

‘package 13, 30, 193

user-defined 197
naming conventions 193
statement 30
accessing 196
creation 195
systems |93
using 197
java.applet 193
jawaawt 193, 319
javaio 193, 296, 312
javalang 193, 315
javanet 193
javautil 193, 297
parameters 128

parameters of applets 282
parent class 3B

e o

piped streams 323
platform-neutral [3-13
pelymorphism 5, 126, 134
precedence operator 70, 74
preparing for applets 248
private access 147
program blocks 51
protected access 147
public access 147
pushback streams 324

L% ﬁhﬂw Frah

random access files 312-314
read statement S0

real arthmetic &1

real constanis 44

relational operators 62
reusability 3

runnable interface 210, 224
running a program 37

scope of variables 31
selection statement 34
separators 313

static members 139
stopping a thread 213
stream classes 290
byte stream 2940, 291
character stream 290, 294
siring array 162
string class |62
string constants 45
string methods 163
StringBuffer class 162, 164
strings LA2
structured programming 1
subclass 5, |38

subscript 153

Sun Micro Systems |1
super class L34

switch statement 93
svmbolic constants 82
synchronization 223
synchronization statement 35
system packages |94

ternary operators 67

thread 207

thread blocking 214

thread class 210

thread creation 200

thread exceptions 219
thread extension 210
thread life-style 214

thread methods 212

thread prionty 220

thread stopping 213
top-down programming |
two-dimensional arrays LS8
tvpe conversion 53

type conversion in expression Tl

= L

s

unicode 31
uniform resources locator 245
using packages [97

class 5], 135
declaration of 48
giving values o 49
local il
scope of 5]
final 43
member 127
instance 51, 133
vectors |66
vector methods 166
virmal machine 318
visibility control 146
vigibility modifiers |46

web server 21

while statement 107
dening 54

World Wide Web 12, 18
wrapper classes |67

Hidden page

The McGraw ‘Hill Companies

Programming with JaVa, 3e, incorporates all the updates and enhancements

added to Java 2 and J2SE 5.0 releases. The book presents the language concepts in
an extremely simple and easy-to-understand style with illustrations and examples

wherever necessary.

Salient Features

Fully explains the entire Java language and its core libraries.

Discusses Java's unique features such as packages and interfaces.

Shows how to create and implement applets.

lllustrates the use of advanced concepts like multithreads and graphics.
Covers exception handling in depth.

Debugging exercises and two full-fledged projects.

Includes model questions from the Sun Certified Java Programmer Exam.

TN EN

Visit http://www.mhhe.com/balagurusamy/java3e for supplementary material

E Balagurusamy is a well-known author on C, C++, Java and C#. His programming books
have sold millions of copies worldwide.

Hlﬂl: wmw.m'n

IS-EH @-97-261713-9

N

| L"‘ /1

== Tata McGraw-Hill

